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Abstract— The monocular visual-inertial odometry (VIO) based on
the direct method can leverage all available pixels in the image
to simultaneously estimate the camera motion and reconstruct the
denser map of the scene in real time. However, the direct method
is sensitive to photometric changes, which can be compensated by
introducing geometric information in the environment. In this paper,
we propose a monocular direct sparse visual-inertial odometry,
which exploits the planar regularities (PVI-DSO). Our system de-
tects the planar regularities from the 3D mesh built on the estimated
map points. To improve the pose estimation accuracy with the
geometric information, a tightly coupled coplanar constraint ex-
pression is used to express photometric error in the direct method.
Additionally, to improve the optimization efficiency, we elaborately derive the analytical Jacobian of the linearization
form for the coplanar constraint. Finally, the inertial measurement error, coplanar point photometric error, non-coplanar
photometric error, and prior error are added into the optimizer, which simultaneously improves the pose estimation
accuracy and mesh itself. We verified the performance of the whole system on simulation and real-world datasets.
Extensive experiments have demonstrated that our system outperforms the state-of-the-art counterparts.

Index Terms— visual-inertial odometry, direct sparse method, 3D mesh, planar regularities

I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) are
research hotspots in the field of robots, autonomous

driving, augmented reality, etc. Camera and inertial mea-
surement units (IMU) are low-cost and effective sensors.
Visual inertial odometry (VIO) combines the complementary
of the two sensors to improve the accuracy and robustness of
the pose estimation. Existing VIO methods [1]–[3] generally
form visual observations based on the feature point (indirect)
method. However, in the weak texture environment, the lack of
effective point features extracted by the indirect method makes
the system fail to estimate the poses. Fortunately, the direct
method [4], [5] can utilize all available pixels of images to
generate a more complete model, which effectively improves
the performance of VIO in weak texture environments. How-
ever, the sensitivity to photometric changes makes it difficult
to accurately estimate the depth of pixels.

It has been shown that the geometric features (e.g., lines and
planes) in the environment can provide valuable information
to VIO, and introducing additional constraints guides the
optimization processes in the VIO system. Line features are
already commonly used in SLAM systems [6]–[9]. Compared
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with straight lines, plane features cannot be accurately recog-
nized, which makes it difficult to introduce plane constraints
into SLAM. The learning-based methods have made signif-
icant progress in plane detection in recent years [10], [11].
Nevertheless, these algorithms rely on GPUs, which consume
relatively high amounts of power, making them impractical
for computationally-constrained systems. Building lightweight
3D meshes based on the real-time map generated by VIO
and extracting the scene structure from the meshes become
a possible way of plane detection [12]. However this method
needs the system to produce denser maps efficiently. However,
the indirect VIO only provides a sparse map of 3D points
[13], [14], which is hard to identify planar features. The dense
mapping methods [15], [16] based on monocular vision and
pixel-wise reconstruction lead to high time complexity and
loss accuracy due to decoupling the trajectory estimation and
mapping.

For the visual odometry (VO) / VIO based on the direct
method, the accuracy of the pose estimation can be further
improved after introducing the planar information. Wu and
Beltrame [17] fuse the coplanar constraints extracted from
color image using PlaneNet [18] into DSO [4]. However,
the CNN-based technique is time-consuming and can only be
applied to global shutter color images. Concha and Civera
[19] model the environment as high-gradient and low-gradient
areas based on LSD-SLAM [20]. The plane features are
segmented from low-gradient areas with superpixels [21] and
estimated using Singular Value Decomposition (SVD) for the
points clustered in each superpixel. However, in texture-rich



scenes, the assumption of extracting the plane information
from low-gradient areas is not satisfied, resulting in wrong
plane segmentation. We noticed that the visual module in the
direct method tracks the pixels with large enough intensity
gradients. As shown in Fig.1, sufficient visual observation
makes the reconstructed map denser. Therefore, it is easy to
extract plane regularities from 3D mesh built on a real-time
estimated denser map, which brings almost negligible compu-
tation burden. Furthermore, introducing geometric information
that is less sensitive to the photometric changes into VIO can
benefit both state estimation and mapping.

This paper proposes a direct sparse visual-inertial odometry
that leverages planar regularities, called PVI-DSO, which is an
extension of DSO [4]. To improve the accuracy and robustness
of the system, IMU measurements and coplanar information
are integrated into the system. We detect the probable planar
regularities from the 3D mesh generated by the real-time
estimated point cloud. Then inspired by the method in [22],
a tightly coupled coplanar constraint expression is used to
construct photometric error. Finally, we derive the analytic
Jacobian for the linearized form of the coplanar constraint and
present it in the Appendix. In summary, the main contribution
of this work include:
• We introduce the planar regularities which are detected

through the 3D mesh in the direct method based VIO to
improve the accuracy of the system. The 3D mesh seg-
mentation which is performed on the real-time estimated
denser map not only couples the state estimation and
mapping, but also brings marginal computation burden.

• We adopt a tightly coupled coplanar constraint expression
in the direct method to construct the photometric error.
For the efficiency of the optimization, the analytical Jaco-
bian in the linearization form for the coplanar constraint
is derived in detail.

• We design extensive experiments on the simulation data,
the challenging EuRoC dataset [23], and TUM VI dataset
[24]. Experimental results demonstrate our system outper-
forms the state-of-the-art methods in pose estimation.

II. RELATED WORK

The most common features used in the SLAM / VIO
algorithms are the points [1]–[4], [25]. As a complement
to the point features, the geometric information (line, plane)
introduced in the system with point features can improve the
accuracy of the pose estimation and mapping, which have
received extensive attention in recent years.

Indirect method with geometric Regularities Since the
line features exist widely in the environment, it seems natural
to fuse the line features into the framework based on points [6],
[7], [26]. Furthermore, in the structural scenario, the lines with
three perpendicular directions of the Manhattan world model
can encode the global orientations of the local environments,
which are utilized to improve the robustness and accuracy of
pose estimation [8], [27], [28]. For the planar information,
the main difficulty is how to accurately extract the planar
regularities in the environment. Some works [29]–[31] extract
plane features with the assistance of depth maps obtained

(a)

(b) (c)

Fig. 1. The proposed direct sparse visual-inertial odometry builds a
denser map running on the V11 sequence of the EuRoC dataset. (a) is
the reconstruction map of the whole scenes. (b) is the coplanar points
on different planes, which are distinguished by different colors. (c) is the
2D Delaunay triangulation generated in the depth map, raw depth map,
and the reconstructed 3D mesh of the corner in the scene.

by the RGBD camera. Rosinol et al. [12] propose a stereo
VIO fusing plane information, called Mesh-VIO. Mesh-VIO
extracts the planar regularities from the 3D meshes, which
are generated by projecting 2D Delaunay triangulation based
on 2D points to corresponding 3D points. However, sparse
point clouds generated by indirect-based vision algorithms
may result in an inaccurate 3D mesh reconstruction. More
recently, Li et al. [32] propose PVIO which leverages multi-
plane priors in the VIO. The system uses the 3-point RANSAC
method to fit the plane among the estimated 3D points with
the RGB camera. Nevertheless, the RANSAC-based method
is not stable when there are multi potential planes in the
environment.

Direct method with geometric Regularities The most
prominent direct VO approach in recent years is direct sparse
odometry (DSO). To improve the stability of DSO, the IMU
measurements are fused into DSO, including: VI-DSO [5]
with dynamic marginalization and DM-VIO [33] with de-
layed marginalization. Meanwhile, structural information in
the environment provides additional visual constraints, which
can be used to reduce the drift of the estimator. For the line
features utilized in the direct method, some works [9], [34],
[35] force the 3D points in the map that satisfy the collinear
constraints using straight lines, but not jointly optimizing
the estimated poses. Zhou et al. [36] introduce the collinear
constraints into the DSO more elegantly. The 3D lines, points,
and poses within a sliding window are jointly optimized.
Cheng et al. [37] extract the Manhattan world regularity
from the line features in the image and merges the structural
information into the optimization framework of photometric
error. Currently, there are few works on fusing planar features
in the direct method. As mentioned previously, the CNN-based
plane detection method [17] consumes a lot of computing
resources. The superpixel segmentation method [19] leads to
wrong segmentation of planes in texture-rich scenes.
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Fig. 2. Overview of our PVI-DSO system.

III. SYSTEM OVERVIEW

The system proposed in this paper is based on DSO [4]. We
introduce the IMU measurements and geometric information
in the environment to improve the accuracy and robustness of
the system. As shown in Fig. 2, the proposed system contains
two main modules running in parallel, the front end and the
back end.

In the front end, we perform the coarse tracking to obtain
the pose estimation and the photometric parameters estimation
of the current frame, which serves as the initialization for the
optimization in the back end. With the aid of IMU integration,
the coarse tracking is executed for every frame, in which
the direct image alignment based on the photometric bundle
adjustment is used to estimate the state variables of the most
recent frame. And then, we determine whether the current
frame is the keyframe through the criterion described in [4]
. If the current frame is a keyframe, it will be delivered to
the back end module. Otherwise, it is only used to track the
candidate points to update the depth. To do so, we search along
the epipolar line to find the correspondence with the minimum
photometric error.

In the back end, the candidate points are tracked and
refined with the latest keyframe to obtain more accurate depth.
To activate the candidate points with low uncertainty, all
active points in the sliding window are projected onto the
most recent keyframe. The candidate points (also projected
into this keyframe) are activated as active points when their
distance to any existing point is maximum [4]. Then, the
planar regularities are extracted from the activated points in the
point clond. We construct the 3D meshes through the depth
map which is generated by the active points. The coplanar
constraints and non-coplanar constraints are obtained through
the segmentation of the 3D meshes. Finally, the operations
of the visual-inertial bundle adjustment are executed. We add
the non-coplanar point residuals, coplanar point residuals,
inertial residuals, and corresponding prior residuals into the
optimizer, which simultaneously improves the accuracy of the
pose estimation and the mesh itself.
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Fig. 3. The coplanar points in the image lie on the plane πi in the world
frame, which is represented by a normal vector ni and a distance di.

IV. NOTATIONS AND PRELIMINARIES

In this section, coordinate transformations are defined and
the representations of point and plane features are given.
Throughout the paper, we denote vectors as bold lowercase
letters x, matrices as bold uppercase letters H, scalars as
lowercase letters λ, and functions as uppercase letters E.

A. Coordinate Transformation
The world coordinate system is defined as a fixed inertial

framework in which the z-axis is aligned with the gravity
direction. Twi ∈ SE(3) represents the transformation from
the IMU frame to the world frame, where Rwi ∈ SO(3)
and twi ∈ R3 are the rotation and translation, respectively.
The transformation from the camera frame to the IMU frame
is defined as Tic ∈ SE(3), and the transformation from
the camera frame to the world frame Twc can be calculated
by: Twc = TwiTic. Similarly, Ric and Rwc represent the
rotations from the camera frame to the IMU frame and from
the camera frame to the world frame. tic and twc are the
corresponding translations.

B. Point Representation
We use the inverse depth dp ∈ R to parameterize the pixels

from the host image frame in which it is extracted. With this
parametric expression, we can project the pixels in the host
image frame Ih into the target image frame It where it is
observed. Assuming pi is the pixel in the Ih, the projection
point p′i in the It is given by:

p′i = Πc

(
RctchΠ−1

c (pi, dp) + tctch
)

(1)

where Rctch and tctch are the relative rotation and translation
from image frame Ih to It, Πc and Π−1

c are the projecton and
back projection of the camera.

C. Plane Representation
As is shown in Fig.3, a plane in the world frame can be

represented by the Hessian normal form πw =
[
nw, dw

]T
,

where nw =
[
nx, ny, nz

]
is the normal of the plane, repre-

senting its orientation and dw is the distance from the origin
of the world frame to the plane. The normal vector nw has
three parameters but only two Degrees of Freedom (DoF) with
||nw||2 = 1.
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Fig. 4. 2-DoF parameter representation of the normal vector n.

To get a minimal parameterization of πw for optimization,
we represent it as q(πw) =

[
φ, ψ, dw

]
, where φ and ψ are the

azimuth and elevation angles of the normal vector and dw is
the distance from the Hessian form. As shown in Fig. 4, πw
is given by:

πw =
[
cos(ψ) cos(φ), cos(ψ) sin(φ), sin(ψ), dw

]T
(2)

Although we express the plane parameters in the world
frame, we need to transfer the plane parameters to the camera
frame to build the photometric error as described below. The
transformation from world frame to camera frame is given by:

πc = T−T
cw πw (3)

where Tcw is the transformation from the world frame to the
camera frame.

V. VIO WITH COPLANAR REGULARITIES
In this section, the mechanism of coplanarity detection

based on the direct method is first described. Then, the
residuals of non-coplanar points, coplanar points, inertial mea-
surements, and prior are emphasized. All the state variables in
the sliding window are estimated by minimizing the sum of
the energy function from visual residuals, IMU residuals, and
prior residuals:

Etotal = λ ·
(
Epoint + E′point

)
+ Einertial + Eprior (4)

where Epoint, E′point, Einertial and Eprior are the photometric
error of non-coplanar points (section V-B), the photometric
error of coplanar points (section V-C), the inertial error term
(section V-D), and the prior from marginalization operator
(section V-E), respectively. λ is the weight between visual
photometric error and inertial error.

A. Coplanarity Detection
The planar regularities are detected from the 3D mesh of the

surrounding environment [12], [14]. The method first builds
2D Delaunay triangulation with the feature points in the image,
and then projects the triangular regularities to 3D landmarks.
The 3D mesh is formed by organizing landmarks into 3D
patches. In the direct method VIO, as shown in Fig. 1 (c),
2D Delaunay triangulation is generated in the depth map. The
reason for this is that the depth map is composed of active
points whose depth has converged, ensuring the accuracy of
3D mesh. Moreover, the depth map is anchored to the multi

keyframes in the sliding window, avoiding the generation
of 2D Delaunay triangulation frame by frame, which limits
memory usage. There might be invalid 3D triangular patches
generated from depth map. We use the method in [12] to filter
out these outliers, which ensures that 3D triangular patches
should not be particularly sharp triangles, such as triangles
with the aspect ratio high than 20 or an acute angle smaller
than 5 degrees.

The gravity direction of VIO can be used to improve
the efficiency of plane detection. Thereby, we only detect
the planes that are either vertical (i.e., walls, the normal is
perpendicular to the gravity direction) or horizontal (i.e., floor,
the normal is parallel to the gravity direction), which are
commonly found in man-made environments. For horizontal
plane detection, in most cases, the only horizontal plane we
observed is the floor. Therefore, we only detect and optimize
one horizontal plane at a time to ensure that it can be tracked
for a long time. The specific strategy is: all triangular patches
that are parallel for the gravity direction are collected. Then
we build a 1D histogram of the average height of triangular
patches. After statistics, a Gaussian filter is used to eliminate
multiple local maximums as used in [12]. Finally, we extract
the local maximum of the histogram and consider it to be the
horizontal plane when it exceeds a certain threshold (σt = 20).

For vertical plane detection, a 2D histogram is built, where
one axis is the azimuth φ of the plane’s normal vector, and the
other axis is the distance d from the origin to the plane. The
histogram is divided into nφ×nd bins with a bin size δφ×δd.
We only count the triangular patches that the normal vector
is perpendicular to the gravity direction. When the triangular
patches fall into the corresponding bin, the number of bin will
be increased by 1. After statistics, we take the candidates with
more than 20 inliers.

B. Photometric Error of Non-coplanar Point
The direct method is based on the photometric invariance

hypothesis to minimize the photometric error. In a similar way
as [4], the photometric error for a non-coplanar point pn with
inverse depth dpn in the host image Ih observed by the target
image It is defined as:

Epn =
∑

pn∈Npn

wpn‖ (It [p′n]− bt)−
tte

at

theah
(Ih [pn]− bh) ‖γ

(5)

where th, tt are the exposure times of the respective image
Ih and It. ah, at, bh and bt denote the affine illumination
transform parameters. Npn represents a small set of pixels
around the point pn. wpn stands for a gradient-dependent
weighting and ‖ ·‖γ indicates the Huber norm. p′n is the point
projected into It, which is obtained by (1). Therefore the sum
of the photometric error of non-coplanar points observed by
all the keyframes in the sliding window is defined as:

Epoint =
∑
i∈F

∑
pn∈Pi

∑
j∈obs(pn)

Epn (6)

where F is the keyframes in the sliding window, Pi is the set
of non-coplanar points in the host keyframe i, and obs(pn) is
a set of observations of pn in the other keyframes.
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Fig. 5. Hessian matrix of the coplanar point residuals and non-
coplanar point residuals. 2 coplanar points and 2 non-coplanar points
are observed by camera O1 and camera O2, and the coplanar points
lie on the plane π (a); traditional residuals of coplanar points need to
optimize the inverse depths, camera poses and plane parameters, which
leads to the huge dimension of the hessian matrix in the optimization
(b); the residuals of coplanar points in this paper only optimize the
camera poses and plane parameters, which reduces the dimension of
the hessian matrix (c).

C. Photometric Error of Coplanar Point
Assuming that the plane πw detected from the 3D mesh

is expressed in the world frame, the photometric error of the
coplanar points can be constructed with the plane constraint
equation. Suppose the 3D point corresponding to pp in Ih lies
on the plane πc transformed into the host image frame, the
point pp satisfies the coplanar equation:

nT
πcΠ

−1
c (pp, 1)/dp + dπc = 0 (7)

where Π−1
c (pp, 1) represents the point on the normalized

image plane. πc is the plane in the host image frame which
can be obtained by (3). nπc and dπc are the normal vector and
distance of πc. Substituting the inverse depth dp of (7) which
is regularized by plane constraints into (1), the projection point
p′p of planar points is given by:

p′p = Πc

(
RctchΠ−1

c

(
pp,−nT

πcΠ
−1
c (pp, 1)/dπc

)
+ tctch

)
(8)

The photometric error of coplanar points is obtained by
substituting p′p into (5), which is the same as that of non-
coplanar points. The sum of the photometric error of coplanar
points observed by all the keyframes in the sliding window
can be written as:

E′point =
∑
i∈F

∑
pp∈Ci

∑
j∈obs(pp)

Epp (9)

where Ci is the set of coplanar points in the host keyframe
i, obs(pp) is a set of observations of the pp in the other
keyframes.

For the optimization method, deriving the analytical Jaco-
bian of estimated variables with the chain derivation method
can significantly improve the efficiency of the optimizer. For
a single photometric error, the Jacobian corresponding to the
state variables can be decomposed as [4]:

JEpp
= [JI · Jgeo,Jphoto] (10)

where JI represents the image gradient. Jgeo denotes the
Jacobian of geometric parameters (Twih , Twit , πw), and
Jphoto indicates the Jacobian of photometric parameters (ah,
at, bh, bt). Please refer to the appendix for the specific forms

of JEpp
. It is worth noting that the coplanar constraints

used in this paper do not optimize the depth of optimization
points simultaneously. As shown in Fig.5, compared with the
traditional point-to-plane constraints [12], [14], the efficiency
of the algorithm can be improved significantly by reducing the
dimension of the Hessian matrix in the optimizer.

D. Inertial Error

To construct the inertial error with angular velocity and
linear acceleration measurements, the pre-integration method
proposed in [38] is used to handle the high frequency of IMU
measurements. This gives a pseudo-measured value between
consecutive keyframes. Given the previous IMU state sIi :=
{twi,Rwi,vwi,bai,bgi}, which contains translation, rotation,
velocity in the IMU frame, and gyroscope and accelerometer
biases, the preintegration measurements provide us with the
prediction state ŝIj for the following state sIj as well as a
covariance matrix Σ̂j . The resulting inertial error function
penalizes deviations from the current estimated state to the
predicted state.

Einertial =
(
ŝIj � sIj

)T
Σ̂−1
j

(
ŝIj � sIj

)
(11)

The subtraction operation si � sj is defined as log
(
RiR

−1
j

)
for rotation and a regular subtraction for vector values.

E. Marginalization about Coplanar Constraints

To balance the efficiency and accuracy, the marginalization
method is used in VO/VIO [4], [5], [33], [39]. When a new
image frame is added to the sliding window, all the variables
corresponding to the older frame are marginalized using the
Schur complement [39]. The marginal keyframe is selected
similarly to the criteria in [4], which considers the luminance
change of the images and the geometry distribution of the
poses. Meanwhile, to maintain the consistency of the system,
once the variable is connected to the marginalization factor,
the First Jacobian Estimation (FEJ) [40] is used to fix the
variable’s linearization point at the same value.

In the sliding window optimization, maintaining too many
historical planes in the optimization will seriously affect the
efficiency of the optimizer. The historical plane should also be
”marginalized” to form the plane’s prior factor. For simplicity,
the plane prior factor generated by marginalization is replaced
by a plane-distance cost, which can be expressed by the
distance from the prior plane π′ = (φ′, ψ′, d′) to the currently
optimized plane π = (φ, ψ, d):

Eπp = wn‖ [φ′, ψ′, d′]
T − [φ, ψ, d]

T ‖2∑
π

(12)

where
∑
π is the covariance matrix. wn denotes the number

of the coplanar constraints corresponding to the plane. If the
plane is marginalized, a prior plane π′ is formed. When the
plane is observed again, it is reactivated and optimized with
prior constraint (12) in the sliding window.



VI. EXPERIMENTS

In this section, simulation experiments are first used to
verify the effectiveness of our method, and then the evaluation
on the real EuRoC MAV dataset [23] and TUM VI dataset [24]
demonstrates the accuracy and efficiency. We provide a video
1 to reflect the results of the experiments more intuitively.
The related code about our analytical Jacobian of coplanar
parametric representation is published on GitHub to facilitate
communication2. We run the system in the environment with
Intel Core i7-9750H@ 2.6GHz, 32GB memory.

A. Quantitative Evaluation

To evaluate the performance of the coplanar constraints
in VIO system, we re-implemented a VIO based on DSO
[4], which is denoted as VI-DSO-RE to distinguish it from
VI-DSO [5] without open source code, and the coplanar
constraints are added into VI-DSO-RE, which is denoted as
PVI-DSO. To verify the effectiveness of coplanar constraints
in the direct method, we evaluate the performance of VI-DSO,
VI-DSO-RE and PVI-DSO, and also compare PVI-DSO with
the state-of-the-art VIOs fusing coplanar constraints: PVIO
[32] with multi-plane priors and mesh-VIO [12], which fuses
the planar regularities generated by 3D meshes.

The simulations and real experiments are conducted, in
which we perform SE(3) alignment against the groundtruth
to get the Root Mean Square Error (RMSE) of the translation
and rotation error. The scale error is computed with |1 − s|,
where s is obtained from Sim(3) alignment. For the TUM VI
dataset, since the trajectory lengths can vary greatly, the drifts
in % are also computed with RMSE·100

length as in [33]. Unless
otherwise states all methods are evaluated 10 times for the
EuRoC MAV dataset and TUM VI dataset on each sequence
and the medium results are reported.

(a) Sequence a (b) Sequence b

Fig. 6. Two simulation environments are illustrated, where points in
blue are distributed on the vertical planes (a) and the horizontal plane
(b). The camera follows green trajectories.

1) Simulation Experiment: Two simulation sequences with
ideal coplanar environments are created to evaluate the ef-
ficiency concerning performance under different parametric
representations. As shown in Fig.6, we simulated camera mo-
tion with 10 Hz, forming an ellipse trajectory with sinusoidal
vertical motion. The long-semi axis and short axis of the
ellipse trajectory are 4 m and 3 m, respectively. The number
of landmarks in each plane is limited to 250, which consists of
the vertical plane sequence and horizontal plane sequence. The

1https://youtu.be/h-3fP6VP0 k
2https://github.com/boxuLibrary/PVI-DSO-SIM
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Fig. 7. Translation error (m) and running time (ms) of Point, PP(-L) and
PP(-T) methods on two simulation sequences.

Gaussian noise is added to the landmark observations (σp = 1
pixel), plane parameters (σn = 5 degrees, σd = 0.3 m), and
camera poses (σR = 5 degrees, σt = 0.3 m) to simulate the real
observation environment. The comparison method includes:
Point, PP (-L) and PP (-T), where Point denotes the point-
based method, the implementation of which is obtained from
open-sourced SLAM VINS [1]. Both PP (-L) and PP (-T)
use coplanar constraints in the optimization module, but in
different ways. PP(-L) fuses more constraints between point-
to-plane with the loosely coupled method as in [12], [14].
Whereas PP (-T) adopts the parametric representation used in
this paper to fuse plane constraints in a tightly coupled method.
Considering it is difficult to simulate photometric error, Point,
PP (-L), and PP (-T) all adopt the geometric reprojection
error instead to verify the performance of different parametric
representations in the simulation experiment.

As shown in Fig.7, compared with the Point method,
the translation error of PP (-L) and PP (-T) with coplanar
constraints decreases on both sequences, which demonstrates
that the performance of the VIO can be improved with
the structural information in the environment. The accuracy
difference between PP (-L) and PP (-T) is marginal, whereas
the effectiveness of PP (-T) is improved significantly, which
is about 2.3 times and 2.4 times faster than Point and PP (-L),
respectively. This is because PP (-T) reduces the dimension of
the Hessian matrix in the optimization without estimating the
state variables of coplanar points.

2) EuRoC Dataset: The EuRoC micro aerial vehicle (MAV)
dataset consists of two scenes, the machine hall and the
ordinary room, which contain different motion and visual
scenes. We compared the positioning accuracy of VI-DSO,
VI-DSO-RE, PVI-DSO, PVIO and mesh-VIO. As shown in
Tab. I, the average RMSE of VI-DSO, VI-DSO-RE and PVI-
DSO are 0.089m, 0.094m and 0.083m, respectively. VI-DSO
adopts dynamic marginalization to maintain the consistency
of the marginalization prior. VI-DSO-RE does not use any
marginalization tricks, so the accuracy of VI-DSO is slightly
higher than that of VI-DSO-RE. Furthermore, the accuracy
of PVI-DSO leveraging planar regularities outperforms VI-
DSO and VI-DSO-RE, which demonstrates that the prior
structural information fused into VIO based on direct method
suppresses the rapid divergence of the VIO, thereby reducing



TABLE I
TRAJECTORY ERROR (M) OF DIFFERENT METHODS ON EUROC DATASET. IN BOLD THE BEST RESULTS. IN BLUE THE SECOND BEST RESULTS

Sequence MH1 MH2 MH3 MH4 MH5 V11 V12 V13 V21 V22 V23

VI-DSO1
RMSE 0.062 0.044 0.117 0.132 0.121 0.059 0.067 0.096 0.040 0.062 0.174

RMSE gt-scaled 0.041 0.041 0.116 0.129 0.106 0.057 0.066 0.095 0.031 0.060 0.173
Scale Error(%) 1.1 0.5 0.4 0.2 0.8 1.1 1.1 0.8 1.2 0.3 0.4

VI-DSO-RE
RMSE 0.081 0.046 0.054 0.137 0.205 0.051 0.108 0.095 0.060 0.057 0.138

RMSE gt-scaled 0.059 0.046 0.053 0.137 0.202 0.041 0.103 0.091 0.060 0.046 0.138
Scale Error(%) 1.3 0.1 0.1 0.1 0.5 1.7 1.9 1.5 0.2 1.8 0.1

PVI-DSO
RMSE 0.073 0.046 0.055 0.114 0.175 0.056 0.100 0.087 0.050 0.044 0.111

RMSE gt-scaled 0.054 0.042 0.054 0.107 0.175 0.052 0.094 0.085 0.050 0.044 0.109
Scale Error(%) 0.7 0.4 0.3 0.5 0.2 1.2 1.9 0.9 0.1 1.7 1.0

mesh-VIO2 RMSE 0.145 0.130 0.212 0.217 0.226 0.057 0.074 0.167 0.081 0.103 0.272

PVIO3 RMSE 0.163 0.111 0.119 0.353 0.225 0.082 0.113 0.201 0.063 0.157 0.280

1 results taken from [5].
2 results taken from [12].
3 results taken from [32].

the cumulative error generated by long-time operation of VIO.
By comparing the scale error of VI-DSO-RE and PVI-DSO,
the average scale error of PVI-DSO decreases by 4%. For
further analysis, we divided the trajectories of V21 and V22
into multiple segments with 10s intervals to compute the scale
error separately. As shown in Fig. 8, the scale error of PVI-
DSO decreased in some segmented trajectories compared to
VI-DSO-RE, which indicates the consistency of the global
scale estimation is improved after introducing the structural
information. Finally, from the experimental results of PVI-
DSO and two methods that introduce the planar information
into VIO based on the indirect method, we can observe that
our method is significantly better than PVIO and mesh-VIO.
This is because VIO based on the direct method utilizes
more visual information in the scene to estimate the state
variables. Moreover, the denser map constructed by PVI-
DSO contains rich structural information, which promotes the
detection of the planar regularities in the map, so as to improve
the positioning accuracy better after introducing the planar
constraints.

TABLE II
RMSE COMPARISON OF DIFFERENT METHODS ON TUM VI DATASET.

TRANSLATION (M) AND ROTATION (RAD) ERRORS ARE LISTED AS

FOLLOWS. IN BOLD THE BEST RESULTS

sequence PVIO VI-DSO-RE PVI-DSO length
trans rot trans rot trans rot

corridor1 0.271 0.379 0.247 0.094 0.104 0.135 305
corridor2 0.442 0.889 0.526 0.414 0.457 0.432 322
corridor3 4.958 3.041 0.167 0.169 0.199 0.154 300
corridor4 0.760 0.574 0.104 0.126 0.119 0.105 114
corridor5 0.718 1.021 0.439 0.428 0.119 0.025 270

magistrale1 5.061 0.450 1.397 0.174 1.487 0.200 918
magistrale2 - - 1.002 0.064 1.334 0.122 561
magistrale3 - - 1.150 0.095 0.847 0.090 566
magistrale4 2.850 0.218 2.073 0.266 1.788 0.194 688
magistrale5 2.998 0.532 0.284 0.021 0.202 0.025 458
magistrale6 6.068 2.465 2.470 0.654 2.268 0.600 771
avg drift % 0.580 0.312 0.161 0.060 0.140 0.046 normalized

3) TUM VI Dataset: We also evaluate our proposed sys-
tem on the two sequences (corridor and magistrale) of the

(b)(a)

(c) (d)
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Fig. 8. Scale error comparison of VI-DSO-RE and PVI-DSO. The trajec-
tories are divided into multiple segments, and aligned with groundtruth
to calculate scale error, respectively. The two colorful trajectories of the
left column are running with VI-DSO-RE on the (a) V21 and (c) V22
datasets. The right two trajectories are the results of PVI-DSO on the
(b) V21 and (d) V22 datasets. Colors encode the corresponding scale
errors (%).

TUM VI dataset. The sequences contain a large number of
images with motion blur and photometric changes, which is
challenging for the direct method. In Fig. 9, we reveal the
reconstructed map and the extracted coplanar points on the
ground and walls running PVI-DSO. The drift of VIO can be
effectively suppressed using the structural information in the
scene. From Tab. II, it can be seen that compared with PVIO,
no matter VI-DSO-RE or PVI-DSO, the translation error and
rotation error decrease significantly. Furthermore, introducing
the planar constraints into VI-DSO-RE, the average translation
drift and rotation drift of PVI-DSO decrease by 13% and 23%,
respectively, which verifies the effectiveness of our proposed
method. It should be noted that there are sequences where the
accuracy of PVI-DSO decreases after introducing the planar



information (eg., corridor3-4, magistrale1-2). This is because
the estimation of the plane parameters gradually converges
during system operation. The visual observation noise may
makes the plane fail to converge to accurate position, and the
inaccurate prior information can damage the performance of
the system.

B. Weight Determination of Photometric Error
Since the camera’s photometric calibration and distortion

correction have significant influences on the standard devia-
tions of the photometric error, it is difficult to determine the
weight ratio of the photometric residuals and inertial residuals
in the optimization. In this paper, the parametric study method
is used to obtain the optimal standard deviation of the pho-
tometric error. After setting different standard deviations, the
cumulative error curves of 200 and 120 runs on the EuRoC
dataset and TUM VI dataset are counted. According to Fig.
10, it can be seen that the different weight ratio of photometric
and inertial residual has a great impact on the positioning
results of the system, and the experimental results on the TUM
VI dataset are more sensitive to the different settings. At the
same time, we can also observe that in the experiments, the
best performance is obtained by setting the photometric error
standard deviation 11 and 16 on the EuRoC and TUM VI
dataset, respectively.

C. Runtime Evaluation
To show the time-consuming details of the algorithm, the

time consuming of different modules in the algorithm is
carefully counted. We calculated the time consumption of
VO based on the direct method, VI-DSO-RE introducing
the inertial constraints in the VO, and PVI-DSO leveraging
the planar regularities in the VI-DSO-RE. Considering the

(a)

(b)

Fig. 9. Reconstructed map and trajectory of corridor3 sequence with
PVI-DSO. (a) is the 3D coplanar points on the vertical planes and
the horizontal planes of the corridor. (b) is the reconstructed denser
map. Two sub-images show the 2D Delaunay triangulation and the
corresponding 3D mesh in the scene, where the pink points in the image
are the detected 2D coplanar points.

(a)

(b)

Fig. 10. Cumulative error plot on the V22 sequence of EuRoC dataset
(a) and corridor4 sequence of TUM VI dataset (b). The different standard
deviation of photometric error affects the accuracy and robustness of
pose estimation.

real-time performance of the system, we set the number of
extracted pixels in the keyframe to 800, the size of the sliding
window to 7 and the maximum number of iterations to 5.

The computation cost (in milliseconds) of different modules
for running on EuRoC’s V11 sequence is shown in Tab. III.
In pure visual VO, about two-thirds of the time is used for
optimization, and the rest time is spent on the visual feature
processing module in direct VO, including pixels tracking,
candidates selection, points activation, pixels extraction, etc.
After introducing the IMU measurements into VO, the total
time consumption of VI-DSO-RE increases slightly. For PVI-
DSO, plane detection and mesh construction have little burden
on the system operation, which only cost 0.72 ms and 1.08
ms, respectively. Whereas compared with VI-DSO-RE, the
time cost of the optimization and marginalization is decreased.
The reason is that PVI-DSO does not need to optimize the
coplanar points, which reduces the dimensions of the matrix
to be solved. The statistics shows that in the sliding window,
the average number of the state variables (plane number ≈ 2,
point number ≈ 1182) of PVI-DSO is fewer than that (point
number ≈ 1422) of VI-DSO-RE.

TABLE III
MEAN EXECUTION TIME (UNIT: MILLISECOND) OF VO, VI-DSO-RE,

AND PVI-DSO RUNNING ON THE SEQUENCE V11.
Module VO VI-DSO-RE PVI-DSO

Plane detection 0 0 0.72
mesh Creation 0 0 1.08
Optimization 18.83 19.40 17.49

Marginalization 0.77 0.79 0.72
Total 31.97 32.54 32.36

VII. CONCLUSION

In this paper, we present a direct sparse visual-inertial
odometry that leverages planar regularities, which is called



PVI-DSO. The denser map reconstructed from the VIO based
on the direct method provides rich structure information about
the scene, which makes it easy to extract plane regularities
from the 3D meshes built on the point cloud. The introduction
of geometric information regulars the 3D map, which simulta-
neously benefits the pose estimation. For the efficiency of the
optimization, a tightly coupled coplanar constraint expression
is used and the analytical Jacobian of the linearization form is
derived. Extensive experiments demonstrate that our system
outperforms the state-of-the-art visual-inertial odometry in
pose estimation. In the future, the engineering drawing will be
introduced in the VIO based on the direct method to provide
the accurate prior information, which will be used to further
improve the accuracy and robustness of the positioning.
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APPENDIX

This section introduces the specific expression of the Ja-
cobian in the coplanar constraint equation. The linearized
photometric observation equation for a single coplanar point
p can be written as:

rk = (It [p′]− bt)−
tte

at

theah
(Ih [p]− bh)

= Jphotoδxphoto + JI · Jposeδxpose + JI · Jplaneδxplane
(13)

where δxphoto =
[
δah δat δbh δbt

]T
denotes the er-

ror state vector of the photometric parameters; δxpose =[
δTwih δTwit

]T
represents the error state vector of the

host IMU pose Twih and target IMU frame Twit ; δxplane =[
δnw δdw

]T
indicates the error state vector of plane param-

eters; JI = [dx dy] means the image gradient in x and y
direction. Jphoto, Jpose and Jplane represent the corresponding
Jacobians of photometric parameters, IMU poses, and plane
parameters, respectively. Jpose and Jplane constitute Jgeo.

The Jacobian of Jphoto is same as [4], which is given by:

∂rk

∂δ
[
ah at bh bt

] =


tte

at

the
ah

(Ih [p]− bh)

− tte
at

the
ah

(Ih [p]− bh)
tte

at

the
ah

−1


T

(14)

The Jacobian of the host IMU frame Twih is written as:

∂rk
∂δTwih

= JI ·
∂p′

∂Π−1
c (p′, dp)

· ∂Π−1
c (p′, dp)

∂δξwih
(15)

where Π−1
c (p′, dp) =

[
p′x p′y p′z

]
represents the 3D land-

marks in the target image frame. δξwih is the minimal para-
metric representation of host IMU pose.

∂p′

∂Π−1
c (p′, dp)

=

 fxp′z 0 − fxp
′
x

p′z
2

0
fy
p′z
− fyp

′
y

p′z
2

 (16)

where fx and fy are the focal length of the camera.

∂Π−1
c (p′, dp)

∂δξwih
=
[
Jrot Jtrans

]
(17)

where Jrot ∈ R3×3 is the Jacobian of the rotation part of the
host IMU frame, and Jtrans ∈ R3×3 is the Jacobian of the
translation part of the host IMU frame. They are given by:

Jrot = −
−RT

wctRwihbfidcc×tcp − dcftfT
i bRT

wih
nwc×

tcp × tcp

Jtrans =
−ft · nw
tcp

+ RT
wct

(18)
where fc is the point observation in the normalized plane of
the host image frame. (Rwc∗ , twc∗) , ∗ ∈ {h, t} indicates the
rotation and translation of the host image frame and target
image frame. (Rwi∗ , twi∗) , ∗ ∈ {h, t} denotes the rotation and
translation of the host IMU frame and target IMU frame. fi and
ft are calculated by fi = Ricfc and ft = Rctchfc, respectively.
b·c× is the skew-symmetric operator. tcp is obtained by tcp =(
RT
wch

nw
)
· fc. And dc is the distance of plane in the host

image frame, which is obtained by (3).
The Jacobian of target IMU frame Twit is written as:

∂rk
∂δTwit

= JI ·
∂p′

∂Π−1
c (p′, dp)

· ∂Π−1
c (p′, dp)

∂δξwit
(19)

where JI and ∂p′

∂Π−1
c (p′,dp)

are calculated in the same way as

the Jacobian of the host IMU frame. ∂Π−1
c (p′,dp)
∂δξwit

is calculated
by:

∂Π−1
c (p′, dp)

∂δξwit
=
[
Jrot Jtrans

]
(20)

where Jrot ∈ R3×3 is the Jacobian of the rotation part of the
target IMU frame, and Jtrans ∈ R3×3 is the Jacobian of the
translation part of the target IMU frame. They are given by:

Jrot = RT
icbRT

wit

(
−Rwchfcdc

tcp
+ twch − twct

)
c×

Jtrans = −RT
wct

(21)

The Jacobian of the plane parameters is given by:

∂rk

∂δ
[
nw dw

] = JI ·
∂p′

∂Π−1
c (p′, dp)

· ∂Π−1
c (p′, dp)

∂δωπ
(22)

where JI and ∂p′

∂Π−1
c (p′,dp)

are calculated in the same way as

the Jacobian of the host IMU frame. ∂Π−1
c (p′,dp)
∂δωπ

is calculated
by:

∂Π−1
c (p′, dp)

∂δωπ
=
[
Jnw · Jngl Jdw

]
(23)

where Jnw ∈ R3×3 represents the Jacobian of the global
parameters representation of the normal vector. Jngl ∈ R3×2

indicates the Jacobian of the global parameters with respect



to the local parameters of the normal vector. Jdw ∈ R3×1

denotes the Jacobian of the distance. Jnw and Jdw is written
by:

Jnw = −
Rctchfc

(
tT
wch
· tcp − (Rwchfc)

T · dc
)

tcp × tcp

Jdw = −Rctchfc
tcp

(24)

and Jngl is given by:

Jngl =

 − cos(ψ) sin(φ) − sin(ψ) cos(φ)
cos(ψ) cos(φ) − sin(ψ) sin(φ)

0 cos(ψ)

 (25)
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