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The Promise: AI as Your Engineering Assistant

The Vision
LLMs have mastered coding, writing, reasoning — why not engineering problems?

Imagine: An AI that can design wireless systems for you

What We Want
Natural Language Input:

• "Design a 5G beamforming system for
8 users with 64 antennas"

• "Optimize RIS phase shifts to
maximize sum rate"

• "Derive the capacity region for MIMO
interference channel"

Expected Output
Complete Solution:

• Mathematical model formulation
• Step-by-step derivations
• Optimized parameter values
• Performance guarantees
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Mathematical Modeling: The Core of Wireless

The Foundation of Our Field
Physical World ⇒ Mathematical Models ⇒ System Optimization

Typical Problem Structure
1. System Modeling:

• Channel: y = Hx + n

2. Performance Metric:
• Capacity: C = log2(1 + SNR)

• SINR: γ = |hHw|2∑
i ̸=k |hH

i w|2 + σ2

Challenges for LLMs
• Complex-valued ops: CM×N

matrices
• Matrix calculus: ∇WTr(WA)
• Physical constraints: power,

causality, stability
• Multi-step reasoning: model →

simplify → optimize

Can LLMs master this? That’s what we investigate.
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Roadmap for Today’s Talk

1. WirelessMathBench: Dataset construction, problem types, evaluation protocol
2. Baseline Evaluation: How good are today’s LLMs? (GPT, Deepseek, Qwen, etc.)
3. WirelessMathLM: Data, GRPO training method, implementation
4. Results: Performance gains, ablation studies, error analysis
5. Discussion: Limitations, future directions, broader impact

Let’s dive into the technical details!
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Part 1
WirelessMathBench:

A Mathematical Modeling Benchmark for LLMs
in Wireless Communications

Xin Li, Mengbing Liu, Li Wei, Jiancheng An,
Mérouane Debbah, Chau Yuen

ACL Findings 2025
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Existing Math Benchmarks: The Landscape

Benchmark Difficulty Domain Engineering Size

GSM8K Elementary General No 1,319
MATH High School General No 5,000
OCWCourses University General No 272
MMMU University Multi Partial 1,983
OlympiadBench Competition General No 8,476
SciBench University Science Partial 695

Ours Expert/Research Wireless Yes 587

Gap in Existing Work
• Focus on general mathematics
• Limited technical domains
• Lack engineering constraints
• Missing real-world complexity

Our Contribution
• Expert/research level
• Real engineering problems
• Complete system models
• Verifiable correctness
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Dataset Construction: Four-Stage Pipeline

Rigorous Quality Control
Stage 1: Paper Selection (IEEE TWC, JSAC, TCOM, ICC, GLOBECOM)
Stage 2: System Model Extraction (LLM-assisted + manual refinement)
Stage 3: Question Generation (MCQ + Progressive + FEC)

Across Stages: Expert Validation (5 researchers, multi-round review)
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Stage 1: Paper Selection & Coverage

Selection Criteria
Source Materials:

• 40 state-of-the-art papers
• Top-tier venues
• Freely accessible on arXiv

Content Requirements:
• Nontrivial mathematical

derivations
• Physical & dimensional constraints

Keyword Distribution
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Technical Coverage: Detailed Distribution

Model-Based Topics
System Model #
RIS (Reconfigurable Int. Surfaces) 19
MIMO / Massive MIMO 12
UAV Communications 6
ISAC (Integrated Sensing & Comm.) 6
Satellite Communications 4
SIM (Stacked Int. Metasurface) 3
NOMA (Non-Orthog. Multiple Access) 2

Problem-Based Topics
Problem Domain #
Beamforming Design 18
Channel Estimation 12
Performance Analysis 8
Trajectory Design 5
Power Allocation 5
Resource Management 4

Note
Papers may span multiple categories · Total unique papers: 40
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Stage 2: System Model Extraction

Unified Summarize Extraction
1. Automated Parsing

• LaTeX source analysis
• LLM-assisted Equation identification

& Variable & Context extraction
2. Manual Refinement

• Verify completeness
• Add missing definitions
• Clarify notation
• Ensure self-containment

Example: RIS System
Extracted Components:
System: RIS-assisted downlink
Channel: heff = hd + HH

r ˆht
Variables:

• hd ∈ CM×1: direct channel
• Hr ∈ CN×M : BS-RIS channel
• ht ∈ CN×1: RIS-user channel
• ˆ = diag(ejθ1 , ..., ejθN )

Constraints: |θn| = 1, ∀n

Anti-Contamination
Reformulate in original language to avoid word-for-word reproduction
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Stage 3: Question Design Philosophy

Three Task Types with Progressive Difficulty

MCQ
Multiple Choice
Test recognition and recall
Example:
Which expression gives
MRC combining gain?
A) |h1|2

σ2

B)
∑

|hi |2
σ2 ✓

C) max |hi |2
σ2

D) N|h1|2
σ2

Fill-in
Progressive Masking
3 difficulty levels
Level 1 (25%):
γ = [MASK]

σ2

Level 2 (50%):
γ =

∑
[M1]

[M2]
Level 3 (75%):
γ = [M1]

[M2] = |hH [M3]|2
[M4]

FEC
Full Equation
Complete derivation
Example:
Given: N-antenna MRC
receiver, channel h, noise
σ2

Derive: Complete SINR
expression with optimal
weights
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Question Example: Multiple Choice Question (MCQ)

Design Philosophy
Purpose:

• Test recognition and recall ability
• Evaluate understanding of key wireless

system modeling elements

Key Challenge
Models must distinguish between closely
related expressions that differ only in
critical details (operators, dimensions,
sequences)
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MCQ Distractor Design: Error Analysis

Distractor Design Principles
Three Categories of Common Errors:
1. Missing Operators (Option B)

• Omitting diag() operations
• Tests understanding of matrix

2. Wrong Sequence (Option C)
• Incorrect order of operations
• Tests knowledge of signal flow

3. Missing Symbols (Option D)
• Incomplete terms in expressions
• Tests completeness of derivation

Design Goal
Each distractor represents a plausible but
incorrect reasoning path models might follow
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Question Example: Progressive Masking Fill-in-the-Blank
Progressive Difficulty Design
Core Concept:

• Incremental complexity across 3 levels
• Each level is independent

Level 1 (25% masked):
• Single variable substitution
• Straightforward inference

Level 2 (50% masked):
• Two interdependent variables
• Requires understanding relationships

Level 3 (75% masked):
• Multiple structured terms
• Complex derivation needed

Mask Ratio Interpretation
Higher masking → Less context provided →
Greater reconstruction challenge
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Question Example: Full Equation Completion (FEC)

Maximum Difficulty Challenge
Task Description:

• Complete formula hidden
• Only scenario description provided

Required Capabilities:
• Deep domain knowledge
• Multi-step symbolic derivation
• Physical constraint awareness
• Dimensional consistency verification

Expert-Level Performance
FEC represents the reasoning level

expected from human wireless engineers
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Expert Validation Process

Review Protocol
1. Independent Review

• Each question reviewed by 2+ experts
• Feedback on accuracy and clarity
• Focus on technical correctness

2. Consensus Discussion
• Resolve disagreements collaboratively
• Third expert consultation if needed
• Iterate until full consensus reached

Validation Criteria
Technical Accuracy:

• Correct mathematical expressions
• Proper physical constraints
• Dimensional consistency

Question Quality:
• Clear problem statement
• Unambiguous correct answer
• No conflicting interpretations

Final Outcome
587 high-quality problems passed rigorous validation → Ready for benchmark evaluation
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Dataset Statistics: Final Composition

Question Type Distribution
Type Count %
MCQ 125 21.3%
Fill-in Level 1 120 20.4%
Fill-in Level 2 115 19.6%
Fill-in Level 3 112 19.1%
FEC 115 19.6%
Total 587 100%

Key Characteristics
• From 40 state-of-the-art research papers
• Expert-level difficulty &

Real-engineering tasks

System Models (7 categories)
• RIS (19 papers) MIMO (12)
• UAV (6) ISAC (6)
• Satellite (4) SIM (3) NOMA (2)

Problem Domains (6 areas)
• Beamforming (18) Channel Est. (12)
• Performance Analysis (8)
• Trajectory Design (5) Power Alloc. (5)
• Resource Management (4)
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Evaluation Protocol

Tested Models (16 Total)
Reasoning Models:

• DeepSeek-R1 (671B)
• OpenAI-o1 / o1-mini

General LLMs:
• GPT-4o, GPT-4
• DeepSeek-V3 (671B)
• Gemini-2.0-flash, 1.5-pro/flash

Math-Specialized:
• Qwen2.5-Math-72B/7B

Domain-Tuned:
• LLaMA-3-8B-Tele

Setup
Prompting:

• Zero-shot evaluation
• Standardized prompts

Scoring:
• MCQ: Direct comparison
• Fill-in and FEC: GPT-4o judge

Fair Comparison
• Identical prompts & Same evaluation
• No cherry-picking
• Reproducible setup
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Main Results: The Performance Cliff

Model MCQ Level 1 Level 2 Level 3 FEC Avg
Reasoning Models
DeepSeek-R1 76.0% 60.0% 34.9% 12.5% 7.8% 38.1%
OpenAI-o1 66.4% 59.2% 32.2% 8.0% 7.0% 34.6%
OpenAI-o1-mini 66.4% 53.3% 29.6% 10.7% 4.4% 32.9%
General Large Models
GPT-4o 72.8% 42.5% 28.7% 6.3% 4.4% 30.9%
DeepSeek-V3 78.4% 50.0% 24.4% 6.3% 7.0% 33.2%
Gemini-2.0-flash 71.2% 40.8% 24.4% 5.4% 4.4% 29.2%
Math-Specialized Models
Qwen2.5-Math-72B 70.4% 37.5% 26.1% 7.1% 6.1% 29.4%
Smaller/Domain Models
Qwen2.5-Math-7B 58.4% 21.7% 7.0% 4.5% 1.7% 18.8%
LLaMA-3-8B-Tele 40.8% 11.7% 4.4% 2.7% 0.9% 12.1%
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Model Comparison: Key Observations
1. Reasoning Advantage
DeepSeek-R1 vs DeepSeek-V3:

• -2.4 pts MCQ
• +10.0 pts Level 1
• +10.5 pts Level 2
• +6.2 pts Level 3
• +0.8 pts FEC

Explicit reasoning helps on complex derivations

2. Math Specialization
Qwen2.5-Math-72B vs LLaMA-70B:

• +4.8 pts average
• Similar on MCQ & Better on Fill-in

General math training provides limited help

3. Domain Fine-tuning
LLaMA-3-8B-Tele vs Base:

• -4.8 pts MCQ
• +0.9 pts Level 1
• -3.4 pts Level 2

Protocol training ̸= math reasoning

4. Scale Effects
Math-7B vs Math-72B:

• -12 pts MCQ
• -15.8 pts Level 1
• -19.1 pts Level 2

Scale matters, but even 72B models struggle
(29.4%)
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Error Analysis: Distribution & Insights

Error Distribution
40 random failure samples from DeepSeek-R1:

• Partial Fill Mismatch: 31%
• Merging separate placeholders
• Inconsistent interdependent variables

• Symbol Misinterpretation: 29%
• Wrong symbols (H vs. T )
• Omitted key operators

• Incorrect Derivation: 24%
• Missing intermediate steps
• Error propagation

• System Mixing: 11%
• Extraneous terms from other systems

• Other: 5%

Key Insights
Common Error Patterns:

• 60% errors involve symbol-mistakes
• Early mistakes propagatd
• Models struggle with

domain-constraints

Implication
Current LLMs lack robust mechanisms for

maintaining multi-step symbolic consistency
in specialized engineering contexts
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Error Example 1: Partial Fill Mismatch

Question: Cell-Free MIMO Conjugate Beamforming
Fill in the blanks:

sm = [MASK1]
K∑

k=1
[MASK2]uk

Given: Pm (power), ηmk (control coef.), ĝmk (channel), uk (symbol)

Correct Answer

sm =
√

Pm

K∑
k=1

√
ηmk ĝ∗

mkuk

Ground Truth:
• MASK1 =

√
Pm

• MASK2 = √
ηmk ĝ∗

mk

DeepSeek-R1 Output

sm =
√

Pmηmk

K∑
k=1

ĝ∗
mkuk

Errors:
• Merged two masks into one:

√
Pmηmk

• Moved ηmk outside summation
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Error Example 2: Symbol Misinterpretation

Question: RIS Channel Model
Complete the cascaded channel expression:

heff = hd + [MASK]ˆht

Given: hd (direct link), Hr (BS-RIS, CN×M), ht (RIS-user, CN×1), ˆ (phase shift)

Correct Answer

heff = hd + HH
r ˆht

Ground Truth:
• MASK = HH

r
• Hermitian transpose for complex

matrices

DeepSeek-R1 Output

heff = hd + HT
r ˆht

Errors:
• Used regular transpose T instead of

Hermitian H

• Omits conjugation operation
24 / 47



Error Example 3: Incorrect Equation Derivation

Question: MIMO Received Signal Power
Derive the received signal power at user k:

P recv
k = [MASK]

Given: Transmit power ρk , channel hk ∈ CM×1, beamforming wk ∈ CM×1, ∥wk∥2 = 1

Correct Answer

Precv
k = ρk |hH

k wk |2

Derivation:
• Signal: hH

k wk
√

ρksk
• Power: E[|sk |2] = 1
• Result: ρk |hH

k wk |2

DeepSeek-R1 Output

Precv
k = p|hH

k wk |2∥wk∥2

Errors:
• Confused pilot power p
• Redundant term ∥wk∥2 = 1
• Early mistake propagated
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Error Example 4: Irrelevant System Mixing

Question: RIS-Assisted MIMO SINR
Derive the SINR for user k in RIS-assisted MIMO system:

SINRk = [MASK]

Given: Single-user RIS-MIMO system, channel hk , transmit power P, noise σ2

Correct Answer

SINRk = P|hH
k wk |2

σ2

System:
• Single-user scenario
• No multi-user interference
• RIS for beamforming only

DeepSeek-R1 Output

SINRk = P|hH
k wk |2∑

j ̸=k Pj |hH
k wj |2 + σ2

Errors:
• Injected NOMA interference ∑

j ̸=k
• Assumed multi-user superposition

(not in problem)
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Key Takeaways: WirelessMathBench

Main Findings
1. Large Gap Exists: Even best models achieve only 38% average accuracy, with FEC

at 7.8%
2. Reasoning Helps: Explicit reasoning models (R1, o1) outperform general models by

5-8 points
3. Difficulty Scaling: Performance degrades exponentially with task complexity

(roughly halves per level)
4. Domain Training Insufficient: Math specialization and telecom fine-tuning provide

limited benefits
5. Systematic Failures: Models struggle with multi-variable coordination, symbol

interpretation, and derivation structure

The Challenge
Can we build specialized models that perform better?
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Part 2
WirelessMathLM:

Teaching Mathematical Reasoning for LLMs in
Wireless Communications with Reinforcement Learning

Xin Li, Mengbing Liu, Yiyang Zhu, Wenhe Zhang,
Li Wei, Jiancheng An, Chau Yuen

Preprint
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The Challenge: From Evaluation to Specialization

Key Finding from Part 1
Even the best model (DeepSeek-R1) achieves only 38% average accuracy

Full Equation Completion: mere 7.8% success rate

Our Goal
Train a specialized model for wireless mathematics

Challenge 1: Data
The Problem:

• Only 587 problems in Part 1
• Insufficient for robust training

Our Solution:
• WirelessMathBench-XL
• Scale up to 4,027 problems

Challenge 2: Training
The Problem:

• SFT: Expensive expert annotations
• Large models: Huge resources

Our Solution:
• Direct GRPO training
• No SFT warm-start needed
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Scaling Up: WirelessMathBench → XL

Paper Collection
arXiv Multi-Category Crawling

Initial Crawl ~47,000

GPT-4o Filter 3,186

Final Selection 970

cs.NI

2005-2025

eess.SP cs.IT

Mathematical 

Extraction
DeepSeek-R1 Processing

10-25
Formulas per Paper

MCQ

3,800

Fill-in

11,400
(25%-50%-75%)

FEC

3,800

Quality 

Assurance 
Dual-Layer Validation

GPT-4o 

Evaluation Auto

6 Expert

Reviewers Manual

Quality Threshold

≥ 3/5

78%22%

Dataset Expansion
Scale Increase:

• 587 → 4,027 problems (7×)
• 40 → 970 papers (24×)

Quality Control
Dual-layer QA:

1. Automated GPT-4o scoring (1-5)
2. Expert validation (≥ 2 required)
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Technical Coverage: WirelessMathBench-XL
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29
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Total: 970 papers

Top Techniques
• Convex Optimization (11.2%)
• MIMO/Massive MIMO (10.4%)
• RIS/IRS (8.5%)

Temporal Distribution
• 2005-2018 (3G/4G): 2.9%
• 2019-2023 (5G): 32.7%
• 2024-2025 (5G+): 64.4%
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Why Reinforcement Learning for Math Reasoning?

Limitations of Supervised Learning
Supervised Fine-Tuning (SFT):

• Requires complete solution traces
• Model mimics training data patterns
• Limited exploration of solution space
• Cannot go beyond training

distribution

The Imitation Gap:
• Training: "Copy teacher’s steps"
• Testing: Need creative

problem-solving
• Result: Struggles with novel problems

RL Enables Exploration
Key Advantages:

• Outcome-based learning
Focus on correctness, not steps

• Solution space exploration
Discover multiple solving paths

• Self-improvement
Learn from trial and error

• Beyond human demonstrations
Can find novel solutions

Evidence from DeepSeek-R1
“RL transforms models from pattern
matchers to problem solvers” 32 / 47



GRPO vs PPO: Architectural Comparison
How GRPO (Group Relative Policy Optimization) Simplifies RL

PPO: Complex Pipeline

𝑞𝑞

𝑜𝑜!

𝑜𝑜"

𝑜𝑜#

𝑟𝑟!

𝑟𝑟"

𝑟𝑟#

𝐴𝐴!

𝐴𝐴"

𝐴𝐴#

𝑞𝑞 𝑜𝑜 GAE 𝐴𝐴

𝑟𝑟

𝑣𝑣

Reward 
Model

Policy 
Model

Value 
Model

… … …

Policy 
Model

Reference 
Model

Reward 
Model

PPO

GRPO

Trained
Models

Frozen
ModelsReference 

Model

⊕
𝐾𝐾𝐾𝐾

𝐾𝐾𝐾𝐾

Group 
Computation

Required Models:
• Reference Model (frozen)
• Policy Model (training)
• Value Model
• Reward Model

GRPO: Streamlined Design
Only 2 Components:

1. Policy Model (training)
2. Reference Model (reference)

Key Innovation: Group Comparison
• Sample G outputs per problem
• Compute group statistics:

Ai = ri − µG
σG

• No need for value model!
• Relative learning within group
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Verification-Based Reward System

Two-Component Reward Function

r(x , y) = α · rformat(y) + (1 − α) · raccuracy(x , y)

where α = 0.1 balances format compliance with correctness

Format Reward rformat

Ensures structural correctness:

rformat(y) = I[regex_match(y , ".*\\boxed{.*}.*")]

Verification Steps:
1. Check proper LaTeX syntax
2. Verify \boxed{} final answer
3. Ensure parseable structure

Purpose:
• Enable automated evaluation
• Maintain output consistency
• Support downstream parsing
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Verification-Based Reward System

Two-Component Reward Function

r(x , y) = α · rformat(y) + (1 − α) · raccuracy(x , y)

where α = 0.1 balances format compliance with correctness

Accuracy Reward raccuracy — Multi-level Verification
Level 1: Direct Matching

• MCQ: Extract and compare letters
• Simple expressions: Exact string

match

Level 2: Symbolic Verification
• Normalize expressions: Remove

spaces, \mathbf, \boldsymbol

• Check mathematical equivalence
• Verify dimensional consistency

Level 3: Semantic Checking
• GPT-4.1-mini for complex expressions
• All-or-nothing evaluation

raccuracy = I[correct answer]
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Implementation Details: Training Configuration

Model Architecture
Base Models:

• Qwen2.5-series: 0.5B, 3B, 7B
• Direct training from base checkpoints

Training Data:
• 3,227 problems (80% split)

Computational Efficiency
• Hardware: 4× NVIDIA A6000 (48GB)
• Time: 14h (0.5B), 40h (3B), 61h

(7B)

Optimization Setup

GRPO Parameters:
• Group size: G = 8
• Clip ratio: ϵ = 0.2
• Temperature: T = 0.6 (validation)
• Temperature: T = 1.0 (training

rollouts)

Training Schedule
• Duration: 40 epochs (240 steps)
• Sequence length: 2048 tokens max
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Results: Dramatic Improvements
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Key Achievements
• 7B model: 21.9% → 39.5% (+17.6 pts, +81% relative)
• 3B model: 12.4% → 25.1% (+12.7 pts, +103% relative)
• 0.5B model: 13.4% → 14.9% (+1.5 pts, +11% relative)
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Detailed Results Breakdown

Model MCQ Fill-in FEC Overall Gain
7B Models
Qwen2.5-7B-Base 44.4% 14.3% 25.1% 21.9% -

+ GRPO 53.4% 37.0% 36.1% 39.5% +17.6
Relative Gain +20% +159% +44% +81%

3B Models
Qwen2.5-3B-Base 26.3% 7.1% 15.7% 12.4% -

+ GRPO 48.9% 17.0% 28.8% 25.1% +12.7
Relative Gain +86% +139% +83% +103%

0.5B Models
Qwen2.5-0.5B-Base 27.1% 5.3% 24.1% 13.4% -

+ GRPO 30.1% 6.1% 26.2% 14.9% +1.5
Relative Gain +11% +15% +9% +11%
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Surprising Discovery: Transfer to General Math

Benchmark Base +GRPO Gain Type
7B Model Results
MATH 500 52.0% 67.0% +15.0 High School
Minerva-Math 12.1% 14.3% +2.2 University
OlympiadBench 25.3% 30.2% +4.9 Competition
AMC 27.7% 41.0% +13.3 Competition
AIME24 6.7% 13.3% +6.6 Competition
Average 24.8% 33.2% +8.4
3B Model Results
MATH 500 41.6% 58.2% +16.6
Minerva-Math 5.9% 9.9% +4.0
OlympiadBench 14.7% 23.0% +8.3
AMC 18.1% 21.7% +3.6
Average 16.0% 22.6% +6.5
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Understanding Positive Transfer
Hypothesis 1: Skill Transfer
Wireless math requires:

• Matrix algebra
• Multi-step derivations
• Symbolic manipulation
• Constraint satisfaction

Evidence:
• Largest gains on MATH (+15pts)
• Strong on AMC (+13pts)
• Consistent across levels

Hypothesis 2: Deep Reasoning
GRPO training forces:

• Exploration of solution space
• Self-correction of errors
• Constraint verification
• Multi-step planning

Evidence:
• Improves on unseen problems
• Better at complex derivations
• Stronger error detection

Key Insight
Domain specialization done right can strengthen fundamentals
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Qualitative Analysis: Solution Quality
Analysis Scope
Comprehensive examination of 800 solutions generated by WirelessMathLM-7B on
WirelessMathBench-XL test problems spanning all difficulty levels

What GRPO Training Achieved
1. Structured Reasoning

• 99.1% systematic solutions
• Clear logical connectives:“therefore”

“thus” “hence”
2. Knowledge Integration

• 87% correct problem identification
• Physical + mathematical fusion

3. Mathematical Sophistication
• Automatic constraint handling
• Method justification
• Physical intuition

Evidence of Real Understanding
• Not template filling
• Not simple pattern matching
• Genuine problem decomposition
• Context-aware reasoning
• Domain knowledge integration

Implication
Verification-based RL can develop
sophisticated domain expertise without
human feedback or supervised warm-start
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Key Takeaways: WirelessMathLM

Main Contributions
1. Efficient Specialization: 7B model approaches GPT-4o (39.5% vs 40.4%) using

100× fewer parameters than DeepSeek-R1
2. Direct GRPO Works: No supervised warm-start needed—verification-based RL

sufficient for domain specialization
3. Positive Transfer: Deep domain training enhances general math (+8.4 pts

average), contradicting catastrophic forgetting
4. Consistent Scaling: GRPO improves all model sizes (0.5B: +11%, 3B: +103%, 7B:

+81%)
5. Scalable Pipeline: Semi-automated dataset construction from 47,000 papers

Broader Implication
Verifiable correctness enables efficient specialization in any technical domain:
Circuit design, Control theory, Cryptography, Formal verification, ...
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Summary: Two Contributions
WirelessMathBench
ACL Findings 2025
The Problem:

• No benchmark for wireless math
• Unknown LLM capabilities

Our Solution:
• 587 expert-validated problems
• Progressive difficulty design
• 16 LLM evaluation

Key Finding:
• Best: 38% average, <8% FEC
• Clear need for specialization

https://lixin.ai/WirelessMathBench

WirelessMathLM
Preprint
The Challenge:

• How to train efficiently?
• Without massive resources?

Our Solution:
• 4,027 problems (970 papers)
• GRPO with verification
• Direct training from base

Key Achievements:
• 7B → 39.5% (near GPT-4o)
• +8.4pts general math

https://lixin.ai/WirelessMathLM
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Thank You!
WirelessMathBench

ACL Findings 2025
https://lixin.ai/WirelessMathBench

WirelessMathLM
Preprint

https://lixin.ai/WirelessMathLM

Questions & Discussion

Xin Li xin019@e.ntu.edu.sg https://lixin.ai
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Open Questions & Discussion

Seeking Your Insights
1. Where should LLMs meet wireless communications?
2. What wireless problems are most “LLM-ready”?
3. How to leverage LLMs’ language capabilities for wireless?
4. What does the community need most?

• Datasets? Tools? Pre-trained models? Benchmarks?
• How can we collaborate to accelerate progress?
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Prior Work in Wireless + LLMs

Early Attempts (Focus on Protocols & Knowledge)
• TeleQnA: Q&A on 3GPP standards
• WirelessLLM: Knowledge retrieval
• TelecomGPT: Protocol understanding + basic formulas + codes
• Tele-LLMs: Fine-tuned on telecom corpus

What They Did Well
• Knowledge extraction
• Protocol summarization
• Basic code generation
• Standard definitions

What’s Missing
• No focus on mathematics
• No systematic evaluation
• No specialized math model
• No benchmark for reasoning

→ We focus on mathematical reasoning, not just knowledge 46 / 47



Comparison with Related Work

Work Domain Approach Data Size Model Size
DeepSeekMath General Math SFT + RL Large corpus 7B
Qwen2.5-Math General Math SFT + RL Competitions 7B-72B
TelecomGPT Wireless SFT Protocols 8B
LLaMA-3-Tele Wireless SFT Telecom corpus 8B
WirelessMathLM Wireless Math Direct GRPO 4,027 problems 0.5B-7B

Our Unique Features
• No SFT warm-start needed
• Verification-based rewards
• Research-level problems
• Transfer to general math

Advantages
• More efficient training
• Domain-specific focus
• Verifiable correctness
• Broader applicability
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