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Co-Planar Parametrization for Stereo-SLAM and
Visual-Inertial Odometry

Xin Li1,∗, Yanyan Li2,∗, Evin Pınar Örnek2, Jinlong Lin1 and Federico Tombari2,3

Abstract—This work proposes a novel SLAM framework for
stereo and visual inertial odometry estimation. It builds an
efficient and robust parametrization of co-planar points and lines
which leverages specific geometric constraints to improve camera
pose optimization in terms of both efficiency and accuracy. The
pipeline consists of extracting 2D points and lines, predicting
planar regions and filtering the outliers via RANSAC. Our
parametrization scheme then represents co-planar points and
lines as their 2D image coordinates and parameters of planes.
We demonstrate the effectiveness of the proposed method by
comparing it to traditional parametrizations in a novel Monte-
Carlo simulation set. Further, the whole stereo SLAM and
VIO system is compared with state-of-the-art methods on the
public real-world dataset EuRoC. Our method shows better
results in terms of accuracy and efficiency than the state-
of-the-art. The code is released at https://github.com/LiXin97/
Co-Planar-Parametrization.

Index Terms—SLAM, Visual Learning

I. INTRODUCTION
Simultaneous Localization and Mapping (SLAM) and Vi-

sual Inertial Odometry (VIO) algorithms aim at camera pose
estimation and scene reconstruction under unknown environ-
ments. They are ubiquitously employed in robotics for tasks
such as planning, obstacle avoidance and navigation. When
applied to indoor environments, these methods have to face
important challenges due to the poor visual features available
in the scene, which is often mostly characterized by low
textured surfaces.

It has been shown that the structural regularities in the
environment (e.g. lines and planes) bring valuable information
to both SLAM and VIO systems [1], [2]. Such features can
guide the SLAM optimization process by introducing addi-
tional constraints. However, how to organize such structural
information and integrate it with the optimization in an effi-
cient way is still an open question. Traditional representations
focused on improving the trajectory accuracy, yet they ignored
the high computational burden. In this work, we aim to tackle
this problem by designing a better representation for planar
structures, which simultaneously improves the accuracy and
the efficiency of integrated stereo SLAM and VIO systems.

Manuscript received: May, 12, 2020; Revised August, 6, 2020; Accepted
September, 22, 2020.

This paper was recommended for publication by Editor Sven Behnke upon
evaluation of the Associate Editor and Reviewers’ comments.

1Xin Li and Jinlong Lin are with Peking University, China
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Fig. 1. System results: (a) input RGB frame; (b) plane instance segmentation;
(c) reconstruction for points, lines and infinite planes; (d) and (e) Hessian
matrices that show the spatial correlation of camera and 3D landmarks within
the traditional [10], [11] and proposed parametrizations, respectively. Black
areas represent zeros, non-zeros otherwise. (e) is sparser than (d). Number
of camera parameters (green), points and lines features (orange) and plane
parameters (blue) are shown.

So far in the literature, several works leveraged points and
lines detected from an RGB image to handle challenging
environments [2], [3], [4], [5]. Yet, the inner geometric re-
lationship between those features is ignored in most of them.
Different than using independent features of line segments and
points, planar regions require fewer parameters to represent
environments. Such planar regions and features can be found
in almost all man-made environments, and they have been
studied and leveraged in stereo SLAM and VIO systems [1],
[6], [7], [8], [9]. They introduce more constraints to the system
that are helpful to improve overall accuracy. Nevertheless, they
also rely on a high number of optimization parameters yielding
limitations in real-world scenarios.

In this work, we propose a novel method to employ planarity
constraints to improve the accuracy and efficiency of SLAM
models based on VIO or stereo in indoor environments.
Our method detects the co-planar point and line features
through a deep learning based plane detection followed by
RANSAC filtering. We then introduce a novel parametrization
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to represent these co-planar features in an unified manner
instead of using them as independent features. The resulting
parametrization decrease the size of Hessian matrix, as well as
make it sparser as shown in Fig. 1(e). As a result, solving the
bundle adjustment problem for estimating the correct camera
parameters and 3D landmarks through second-order Newton
optimization, which relies on calculating Schur complement
on the Hessian matrix, becomes more efficient.

Furthermore, we show how our parametrization model can
be integrated in a stereo SLAM or VIO pipeline as shown
in Fig. 2 as we want to prove that our plane extraction and
parametrization methods are general. By taking either a stereo
image input, or an image with IMU sensor data, we solve
the tracking and mapping problem through a graph based
optimization. The non-planar 3D landmarks are integrated in
the traditional way as 3D points, whereas the planar landmarks
are introduced within the pipelines through proposed co-
planarity parameters.

For evaluation, we used the public real-world EuRoC dataset
and a newly created Monte-Carlo simulation set to perform
further ablation studies. We compare our stereo-SLAM method
against point-line SLAM approaches, as well as our VIO
method against the state-of-the-art plane-based VIO models.
Our method shows improvement in accuracy on both pipelines
while benefiting from lower runtime, demonstrating the effec-
tiveness of co-planar constraints for SLAM. In summary, our
paper proposes the following contributions:
• a novel two-stage plane detection strategy from RGB

images, leveraging a neural network based plane segmen-
tation and a robust outlier filtering

• a novel parametrization for co-planar points and lines that
unifies the parameters, resulting in an efficient bundle
adjustment optimization through the smaller and sparser
Hessian matrix

• the deployment of these contributions within two different
camera tracking frameworks, based respectively on VIO
and stereo SLAM, both individually reporting state-of-
the-art results.

II. RELATED WORK

Feature-based SLAM is traditionally addressed by tracking
keypoints along successive frames and then minimizing some
error functions (typically based on re-projection errors) to
estimate the camera poses [13]. For point/based only method,
there are many successful proposals, such as PTAM [14],
SVO [15] and ORB-SLAM [3]. However, using only point
features has strong limitations within textureless environments
as well as under illumination changes.

To deal with these problems, line-segment based methods
were proposed [16], [17]. Moreover, planar regions and as-
sociated features have been leveraged by SLAM systems.
In early works [1], planes in the scene were detected by
RANSAC among estimated 3D points, which is time con-
suming and not stable. These plane-based mapping and track-
ing methods, however, are common within RGB-D sensors
since it is easier to segment planes from depth maps. Salas-
Moreno et al. [18] present a dense mapping approach by using

bounded planes and surfels with RGB-D sensors. Point-Plane
SLAM [19] computes orthogonal relationships between planes
from depth maps, then uses constraints for pose estimation.
CPA-SLAM [20] models the scene as a global plane model,
which is helpful to remove drift by aligning current RGB-D
frame with the plane model. By using IMU, VIO methods can
deal with fast motion easily. MSCKF [21] and ROVIO [22]
are popular filter-based methods, but the first one does not
maintain estimates of 3D landmarks in the state vector. Differ-
ent to those methods, an optimization strategy is used VINS-
MONO [5] and Mesh-VIO [6] for pose estimation.

Instead of a set of features, planes are also used to construct
co-planar regularities for points and lines. Instead of extracting
planes from sparse point cloud, Mesh-VIO [6] builds 2D
Delaunay triangulation based on 2D points first, and then
project them into 3D from their correspondences. They find
vertical and horizontal planes from the gravity vector given
by the IMU, then merge the co-planar constraints in the
optimization module. With the introduction of deep learning,
methods were proposed to estimate planes from a single
RGB image, hence opening up new possibilities for SLAM
systems. PlaneReconstruction [23] and PlaneRCNN [24] are
state-of-the-art plane instance segmentation methods for a
single image. In addition to planes, they also estimate depth
and normal maps from a single RGB image.

Inverse depth [10] and parallax angle [25] were proposed to
represent point features in monocular systems. Inverse depth
parametrization uses the inverse of the depth from its anchor
camera, which works more accurately for distant features.
Instead of using depth, the parallax angle is used in [25]
which obtains good performance in both nearby and distant
features. TextSLAM [26] suggests to extract text-based visual
information and treats each detected text as a planar feature. In
line parametrization methods, Plücker coordinate is a popular
representation method for 3D line initialization and transfor-
mation. Each 3D line, however, has only 4 degrees of freedom
(4DoFs), and the six parameters of Plücker coordinates lead
to over-parameterization [27]. So, an orthogonal representation
based on only four parameters is used in the optimization to
solve this problem.

III. PROPOSED METHOD

In this section, we first explain our co-planar parametriza-
tion strategy, which includes plane instance detection and
RANSAC based filtering steps. Then, we introduce the im-
plementation details of our stereo and VIO versions that use
the proposed parametrization in a sliding window optimization
fashion.

A. Coplanarity-based Parametrization

A plane is defined by equation nXT
c + d = 0, where

n = (n1, n2, n3) ∈ R3 is the normal of the plane, Xc is a
3D point in camera coordinates, and d ∈ R is the distance
from the plane to the origin of the camera c. However, this
representation has an over-parametrization problem, and it
cannot be solved with the Gauss-Newton approach due to
singularity issue [28]. So we optimize the normal n on the
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Fig. 2. The pipeline of our plane-parametrized SLAM system. The overall pipeline follows the classical tracking and mapping approaches [3], along with
the sliding-window based optimization. The pipeline can take as input either a stereo image pair or an image with IMU sensor data. 2D features and initial
camera pose is estimated in a similar way as previous works [12], [5]. Then we detect planar regions via plane instance segmentation. After selecting the
potential co-planar points and lines on the planar region, we remove the outliers with RANSAC. We present the remaining robust points and lines with the
proposed parametrization, which can be directly integrated as an additional constraint in SLAM optimization.

Fig. 3. Examples of plane instance segmentation on EuRoC dataset and
architecture of the plane instance segmentation network.

tangent space S2 with another optimization method, which
is similar to Mesh-VIO [6]. In this section, we first describe
how the co-planar points and features are detected. Then, we
explain our parametrization for points and lines, respectively.

a) Plane Instance Segmentation: In order to detect
planar regions in the scene in real-time, we use a plane
instance segmentation network, which is a simplified version
of PlaneReconstruction [23]. This network has two branches:
planar mask decoder and a plane embedding decoder. The first
branch decodes a binary mask for planar regions. The second
one decodes the feature maps to an embedding space where
mean-shift clustering is used to group each pixel into planar
instances, iteratively. We train this plane detection network on
ScanNet dataset [29] for 30 epochs.

b) Co-planar feature extraction: Since the plane in-
stance segments extracted by the neural network might be at
times inaccurate, we refine them by extracting 2D point and
line features from images. Selecting the extracted features that

align with the detected plane segments will lead us to robust
features. We use ORB features [30] and LSD segment detec-
tion [31] to extract sets of co-planar points [Sx1 , . . . S

x
m] and

co-planar lines [Sl1, . . . S
l
m], where each distinct set consists

of co-planar features Sxn = [xi . . . xj ], n ∈ [1,m] and xi is a
2D pixel. For a stereo input, we obtain 3D points and lines
by triangulating left-right image pairs. Whereas for VIO, the
visual input is monocular and we triangulate sequential frames.
During SLAM optimization, when a frame is detected as a
new keyframe, we associate the features of this new frame
with previous keyframes (i.e. check if they match and if they
do not match, initiate new 3D landmarks with these features).
After associating the landmarks, we build the potential co-
planar points and lines, as shown in Fig. 2.

Due to the presence of outliers in the potential co-planar
sets, we employ the following refinement strategy. First, for
the current frame, we preserve the features that have been
successfully triangulated. Then, we classify them according to
detected 2D plane instance segments. If the number of features
detected in a plane instance region is greater than a certain
threshold, it will be considered as a potential planar region
in 3D. If it is smaller than the threshold, plane will not be
considered. After that, we use a RANSAC filter to find co-
planar constraints in the potential planar region. We take out
points Cx and lines Cl in the potential planar region and feed
them to the filter. Specifically, corresponding rules in Eq. 1
are selected to fit parameters Γ of the plane according to the
type of z (∀z ∈ Z,Z = [Cx, Cl]),

f(c,Γ) =

{
δ⊥(Px,Γ), z ∈ Cx
max(δ⊥(cls,Γ), δ⊥(cle),Γ), z ∈ Cl

(1)

where δ⊥(·, ·) denotes the perpendicular distance from a 3D
point Px to the plane in 3D, cls and cle are the start and end
points of the line respectively. Note that we only consider lines
which have both endpoints lie on the same planar region. If
the size of the largest consensus set exceeds a threshold θcp
(80% in our experiments), we add the corresponding plane
candidate to the system and establish point-plane and line-
plane associations in the consensus set. We remove the outliers
from the initial sets. When new 3D points and lines are
generated in the system, we check if they belong to existing
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Fig. 4. Point and line features are shown on a detected planar region πj
with a normal nπ . hi is the depth from camera frame origin to the 3D point
pi. nl is the normal of a line on the plane nπ . Our parametrization rewrites
the plane equation in terms of image pixel coordinates and combine line and
point features.

planes using the same metric defined above and store those
correspondences. It is important to note that it would be also
possible to detect planar regions by using only RANSAC
(without the deep learning method). However, when there are
unknown number of planes in a scene, RANSAC does not
work optimal. It requires several iterations, where at each
time a single planar region is detected and inlier points are
removed. Yet, the false-detections accumulate over each time
and results degenerate. We prevent this issue by detecting all
planes through a neural network initially.

c) Parametrization of points: After associating points
and lines to co-planar regions as previously described, we
obtain refined co-planar feature sets and parameters for each
plane instance. As shown in Fig. 4, 3D points are the intersec-
tions of the detected plane and the camera-to-landmark rays.
For each 3D point P cx = (xc, yc, zc) which lies on the plane
π in camera frame c, we have the function nTπP

c
x + dπ = 0.

For example, the depth from origin of camera frame to the 3D
point Pi is hi. A normalized 3D point is presented as (x̂, ŷ, 1),
where (xc, yc, zc) = (x̂, ŷ, 1) · hi. Also,

(x̂, ŷ, 1)T = K−1(u, v, 1)T (2)

where K is the intrinsic matrix of camera c, and (u, v) is
the 2D point corresponding to the landmark P cx . Then, the
co-planar relationship for points can be represented as

hi · nTπK−1(u, v, 1)T + dπ = 0, (3)

where the relationship contains 2D pixel of the landmark and
parameters of the plane. So in our parametrization, the point
p∗ lying on a planar region can be represented as

p∗ = [nπ, dπ]. (4)

d) Parametrization of lines: For line features, the
Plücker coordinates L =

[
n>l ,d

>]> are used to initialize
3D lines, where d ∈ R3 is the line’s direction vector in
camera frame c, and nl ∈ R3 is the normal vector of the
plane determined by the line and the camera frame’s origin
point (Fig. 4). Furthermore, the line is the intersection of two
known planes πl and πP , so the dual Plücker matrix L∗ can
be computed by:

L∗ =

[
[d]× nl

−n>l 0

]
= πlπ

>
P − πPπ>l ∈ R4×4 (5)

where [·]× is the skew-symmetric matrix of a three-
dimensional vector, and π = [n,d] is a 4D vector. Then we
can easily get Plücker coordinates L =

[
n>l ,d

>]> from the
dual Plücker matrix.

e) Resulting Hessian matrix: Compared with other
proposed representations, which treat points and lines as
independent features, our method uses one plane parameter to
represent all co-planar features. Novel parametrization is then
used in the bundle adjustment, which is solved by a second-
order Newton optimization method, the Levenberg-Marquardt
algorithm. This relies on taking the gradients of the residuals
with respect to parameters (3D landmarks and camera poses)
and solving the normal equations. Hence, when there are less
number of parameters, Hessian matrix will be smaller. When
there are less dependencies between the parameters, the sparse
structure of Hessian can be employed more efficiently through
Schur complement. The resulting Hessian matrix is illustrated
in Fig. 1 and it’s effects on efficiency are further shown in
Experiments section, in Tab. III. The optimization equations
are explained in next subsection. Further interested reader is
referred to [32].

B. System Implementation

In this section, implementation details are introduced for
both versions of our approach, i.e. the stereo SLAM and VIO,
respectively.

a) Tracking: The goal of the tracking module is to
extract 2D features and estimate the camera pose for each
frame. In the stereo version, we estimate camera pose via point
and line features, where stereo keypoints are defined by three
coordinates xs = (uL, vL, uR), here (uL, vL) are coordinates
on the left image and uR is the horizontal coordinate for
the corresponding matches in the right image. Similar to
points, lines between two images are matched by Line Band
Descriptor (LBD) [33]. Furthermore, motion model is used
to provide an initial pose that is refined by a frame-to-frame
tracking strategy similar to ORB-SLAM [3]. Instead, for the
VIO version, the initialization strategy of IMU is similar to
VINS-Mono [5], which relis on a loose coupling strategy to
align IMU pre-integration with the visual-only part. Different
than visual-only (stereo) branch, the initial pose for optimiza-
tion in VIO is obtained from IMU pre-integration [2], [5] so
that the visual part can be regarded as a purely monocular
version. Monocular keypoints are defined by two coordinates
xm = (uL, vL) which are triangulated from multiple views.

In the system, we use different strategies for keyframe
detection in stereo and VIO pipelines. For the former one, a
new keyframe can be added only after at least 20 frames. Each
keyframe tracks more than 40 points and 10% of keypoints
should be new keypoints compared to the nearest keyframe.
However, for the latter one, we consider the average parallax
(with rotation compensation) of tracked features between two
keyframes, which should be more than 10 degrees (similar to
VINS-Mono [5]).

b) Mapping: When a keyframe is detected and inserted,
we associate its 2D features to 3D corresponding landmarks
in the sliding window (or local map) by 2D feature matching.
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For each non-associated 2D feature, we triangulate it with
other keyframes in the VIO version, while for stereo, non-
associated points and lines are usually triangulated by each
stereo pair. Different from points, 3D lines are triangulated by
two intersecting planes colored in blue in Fig. 4, which are
observed in different views.

Based on the potential co-planar regions and the RANSAC
filter, 3D landmarks are divided into two sets for optimiza-
tion: planar features and non-planar features. Inverse depth
algorithm is used to represent points; and Plücker coordinates
and orthonormal representations are used to represent lines
following He et al. [2], which are then fed to window-based
bundle adjustment for optimizing poses and landmarks.

c) Bundle adjustment with co-planar parametrization:
In this part, we use re-projection error functions to optimize
camera pose and landmark positions. Two different error
functions are used for planar and non-planar features. Non-
planar features are represented by traditional parametrization
and optimized directly. However, co-planar features are refined
by optimizing the parameters of the proposed parametrization.
For point features, the re-projection error rpik strands for the
the distance between the projected point of the jth map point
and the observed point in the kth frame, which is noted as

rpik = xik −Π(Tkw, P
w
i ) (6)

where Π() re-projects the ith global 3D point Pwi coordinates
into the kth frame. For general points, Pwi is represented as
(xw, yw, zw). Points lying on a plane are represented with
Eq. 3.

For line features, the re-projection error rljk is defined as
the distance between the re-projected line of the jth map line
and two endpoints of its corresponding 2D line in the kth
keyframe, which is given by,

rljk =
[

s>nl√
n2
1+n

2
2

e>nl√
n2
1+n

2
2

]>
(7)

where nl = [n1, n2, n3]> is the 2D line re-projected from
the 3D line to the camera frame, s = [x̂s, ŷs, 1]> and
e = [x̂e, ŷe, 1]> are two end-points of the observed line
segment in the kth image plane. For general lines, nl can
be represented as in an orthonormal way [2]. Lines lying on
a plane are represented with the Eq. 5.

Given by the Eq. 6 and Eq. 7, We can therefore construct
a unified target function which optimizes all terms simultane-
ously,

E =
∑
k,i

ρp(r
p
ik
>

Λikr
p
ik) +

∑
k,j

ρl(r
l
jk

>
Λjkr

l
jk) (8)

here ρp and ρl present robust Cauchy cost functions. Respec-
tively, Λik and Λjk are the information matrices of points and
lines, as calculated in [2], [5].

d) Tightly-coupled optimization for inertial constraints:
For the VIO case, we fuse the data coming from the visual
and inertial sensors via non-linear optimization in a tightly
coupled form. Different from the stereo case, visual features
are transferred to the IMU body coordinate system via extrin-
sic parameters [Rbc tbc] between camera and IMU. So the
unified target function for the VIO branch can be shown as,

E =
∑
k,i

ρp(r
p
ik
>

Λikr
p
ik) +

∑
kj

ρl(r
l
jk

>
Λjkr

l
jk)

+
∑
b

ρl(r
b>Λbr

b) + Em

(9)

where rb is the IMU residual, and Em is the prior residual
from marginalization operator in the sliding window. For more
details, readers are referred to [5].

IV. EXPERIMENTS

To evaluate the proposed method, we benchmark it against
the state of the art on the EuRoC dataset [34]. In addition,
we perform Monte-Carlo simulations to verify the robustness
and efficiency of the novel parametrization. We evaluate both
stereo and VIO pipelines with Absolute Trajectory Error (ATE)
which measures absolute translational distances between the
ground truth pose and the corresponding estimated pose. All
the experiments run on an Intel Core i7-8550U @ 1.8GHz and
16GB RAM.

A. EuRoC Dataset

EuRoC is a popular public dataset for stereo SLAM and
VIO systems, which collects stereo images and inertial data
from an aerial vehicle in indoor environments [34]. There are
two scenarios in this dataset: Vicon Room (V) and Machine
Hall (MH), with eleven sequences in total. VH is an indoor
environment and has several planar regions, whereas MH is
the interior of an industrial facility where planar regions are
unevenly distributed.

a) Ablation studies: In order to evaluate the perfor-
mance of the proposed parametrization in EuRoC, we fix the
front-end and compare five formulations: P (−wo), P (−w),
PL(−w), P (−r), and PL(−r), where P denotes a point-
based method, and PL denotes a point-line-based system.
(−wo) means the traditional parametrization (only inverse
depth), and both (−r) and (−w) use co-planar constraints in
the optimization module, but in different ways. (−r) uses more
equations between point-to-plane and line-to-plane, which are
merged into optimization as in Mesh-VIO [6], [8]. Whereas
(−w) presents these residuals within the proposed co-planar
parametrization.

The results of the stereo and VIO versions on EuRoC dataset
are presented in Fig. 5(a) and Fig. 5(b), respectively. In gen-
eral, the proposed parametrization PL(−w) results in lower
RMSE compared to traditional parametrizations, P (−wo) and
P (−w), in both cases, and especially in the MH sequences,
where the line features can provide more robust constraints
with planar regions in the large industrial environment.

For stereo approaches, as shown in Fig. 5(a), line features
make the system more robust especially in V 103 and V 203
sequences, where severe motion blur happened. In other
Vicon sequences, PL(−w) performs better than PL(−r)
because the proposed two-stage co-planar approach removes
distances between those co-planar features and planes directly.
In MH01, MH02 and MH03 which are textured sequences,
all approaches obtain similar results. In Fig. 5(b), P (−wo)
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(a) RMSE (cm), stereo

(b) RMSE (cm), VIO

Fig. 5. Comparison in terms of ATE of different parametrization variants:
P (−wo), P (−r), P (−w),PL(−r) and PL(−w). The top part shows
results for stereo, and the bottom one for VIO. The proposed parametrization
PL(−w) achieves the best results for all sequences where structural regu-
larities are detected and enforced. * shows lost tracking on V103 and V203
sequences.

and P (−w) perform equally on MH03, MH04 and MH05
sequences, because there are not any structural regularities
detected. When there are some planar regions detected, as
in V 202, MH01 and MH02, the proposed parametrization
P (−w) obtains better performance than traditional methods. If
enough features can be obtained and few good co-planar sets,
our system’s performance will degenerate to that of traditional
methods, as in sequences V 102 and V 201. The computation
time of different operations in V101 is presented in Tab. II.

b) EuroC evaluation: We compare our stereo branch
against the stereo version of ORB-SLAM2 [12] and FMD-
SLAM [35]. It is important to note that, for fairness of
comparison, the tested ORB-SLAM2 does not have loop
closure. Furthermore, we compare our VIO version against the
recently proposed MSCKF [21], ROVIO [22], VINS-MONO
[5], and Mesh-VIO [6]. Results are given in Tab. I. These VIO
algorithms use all a monocular camera, except Mesh-VIO that
uses a stereo camera. Results of previous works are taken from
Rosinol et al. [6].

The left part of Tab. I shows that the PL(−w) approach
is an accurate and robust method compared with state-of-
the-art VIO methods on sequences. Compared with Mesh-
VIO [6], which also uses planar information to build co-planar
regularities in the optimization process, our method performs

better on most sequences, where Mesh-VIO obtained more
vertical planes from 3D mesh due to using gravity during plane
detection. When horizontal and vertical planes are difficult to
detect as in V 103 and some of the MH sequences, Mesh-
VIO tends to degenerate easily so that it cannot build co-
planar constraints. In sequence MH05, we observe a 26% im-
provement compared to the second best performing algorithm
(Mesh-VIO), and in sequence V 103, a 15% improvement and
35% improvement compared to VINS-MONO and Mesh-VIO,
respectively. It can be seen that the optimization methods
of VINS-MONO, Mesh-VIO and PL(−w) are more robust
than the filter-based MSCKF. Meanwhile, our method is more
robust for indoor environments that have lots of co-planar
regularities.

The stereo SLAM comparison is shown on the right side
of Tab. I. Stereo ORB-SLAM2 obtains comparable results
to ours on all sequences except V203 and MH04. In those
textured sequences, this method tracks the features in a stable
and accurate way. Instead, V203 is a difficult sequence be-
cause of the fast motion and the strong illumination changes,
and tracking fails for both ORB-SLAM2 and FMD-SLAM.
Benefiting from using point and line features, our method is
instead more robust and can deal also with this sequence. The
average RMSE values, for fairness computed without taking
sequence V203 into account, show that our method obtains
25.7% and 38.7% improvements compared to ORB-SLAM2
and FMD-SLAM, respectively.

B. Simulation Dataset
We create two simulation sequences with ideal co-planar

environments to evaluate the efficiency with respect to per-
formance under different parametric formulations. As shown
in Fig. 6(a), the first sequence has 100 lines and 200 points
generated in 4 directions, which are observed by virtual
cameras that follow a sinusoidal trajectory with 150 simulated
poses. The second sequence consists of 20 lines and 50 points
observed by 50 camera poses as shown in Fig. 6(b).

(a) Sequence a (b) Sequence b

Fig. 6. Two simulation environments are illustrated, where points and lines
are in red and blue, respectively. Camera follows green trajectories.

For line measurements, the virtual camera gets two end-
points from each measurements. Note that each measurement
of a point, including endpoints of lines and point features,
is corrupted by 1-pixel Gaussian random noise. In order to
simplify the simulation, we simulate relative pose odometry
measurements as pose estimation results from the tracking
module, which have random noise as,

q̄m =

[
1
2nθ
1

]
⊗ q̄, pCm = pC + np (10)
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VIO Stereo
MSCKF

[21]
ROVIO

[22]
VINS

MONO [5]
Mesh

VIO [6]
PL

(-wo)
PL
(-r)

PL
(-w)

ORB
SLAM2 [12]

FMD
SLAM [35]

PL
(-wo)

PL
(-r)

PL
(-w)

V101 34 10 7 6 8.4 8.5 8.4 9 9 8.4 8.0 8.0
V102 20 10 10 7 11.0 10.9 11.0 8 20 7.5 7.0 7.0
V103 67 14 13 17 11.9 11.9 11.9 20 53 10.6 9.8 9.6
V201 10 12 8 8 8.1 8.1 8.0 7 9 9.0 8.2 8.2
V202 16 14 8 10 12.0 10.5 10.5 10 8 12.4 11.8 11.8
V203 113 14 21 27 20.9 20.9 20.9 × × 19.8 18.8 18.8
MH01 42 21 27 14 17.1 16.3 16.2 4 4 2.9 2.9 2.9
MH02 45 25 12 13 11.0 10.2 10.0 5 4 4.1 3.9 3.9
MH03 23 25 13 21 17.6 17.6 17.6 4 5 4.0 3.7 3.7
MH04 37 49 23 22 18.5 18.4 18.2 16 9 10.6 10.6 10.6
MH05 48 52 35 23 18.2 18.0 17.7 20 9 12.1 12.1 12.1

Average 41.3 22.3 16.0 15.2 14.1 13.8 13.7 10.6* 12.9* 8.1* 7.8* 7.8*

TABLE I
COMPARISON IN TERMS OF RMSE (CM) OF THE PROPOSED PL(−w) PIPELINE AGAINST THE STATE OF THE ART ON THE EUROC DATASET. BEST

RESULTS ARE BOLDED. × SHOWS LOST TRACKING. AVERAGED RESULTS WITH * DO NOT INCLUDE THE SEQUENCE V203.

Fig. 7. Comparison of the optimization time (ms, top) and RMSE (cm,
bottom) for pipelines P (−wo), P (−r), P (−w), PL(−r) and PL(−w).

where nθ and np are the Gaussian white noises added to the
relative pose, with σθ = 1 deg and σp = 10 cm, respectively.

a) Performance: We pose the visual SLAM system
as a non-linear least squares problem, solved via Gaussian-
Newton. Maximum 10 iterations are allowed for each method
in this simulation for a fair comparison. We run the simulation
sequence 30 times and show median results for the accuracy
of the estimated trajectory and optimization time. Fig. 7 shows
similar performance across sequences, that is, (−w) is more
accurate and efficient than (−r) and (−wo). The second
sequence (b) requires more optimization time and results in
lower RMSE since more features are measured by each camera
compared to the first. P (−wo) requires less time than P (−r)
in two sequences because it does not use structural regularities

Operation P(-wo) P(-r) P(-w) PL(-wo) PL(-r) PL(-w)
Point D&M* 4 4 4 4 4 4
Line D&M - - - 96 96 96
Plane Seg. - 29 29 - 29 29
Plane fitting - 10 10 - 10 10
Optimization 43 44 40 36 46 42
Total time 56 60 55 57 58 54

TABLE II
COMPUTATION TIME (MEAN, MS) OF DIFFERENT OPERATIONS IN THE

V101 SEQUENCE OF EUROC. * MEANS THAT THE OPERATION IS USED FOR
EACH FRAME, OTHERWISE IT IS PERFORMED ON KEYFRAMES ONLY. D&M

NOTES DETECTION AND MATCHING. - MEANS THAT THE OPERATION IS
NOT USED.

and has small optimization computation as shown in Fig. 1(d).
P (−r) has a higher computational burden (Fig. 1(e)) and is
more accurate than P (−wo). While combining line features
in the system, like PL(−r), results are more accurate even
if the method requires more time. Compared to P (−r) and
PL(−r), our parametrizations for points and lines (P (−w))
are more efficient. In terms of optimization time, P (−w) has
a 31% improvement and PL(−w) 33%, compared to P (−r).

P(-wo) P(-r) P(-w) PL(-wo) PL(-r) PL(-w)
items 100 101 51 120 121 51

parameters 350 353 303 430 433 303

TABLE III
THE NUMBER OF LANDMARKS UPDATED IN OPTIMIZATION MODULE OF

SEQUENCE 2.

b) Number of parameters: Furthermore, we analyze
the reason of efficiency from the perspective of number of
parameters that are to be updated. In traditional parametric
methods (inverse depth for points and orthogonal approach
for lines), each point, line and plane need 1 parameter, 4
parameters and 3 parameters, respectively. However, in our
parametrization method, all points and lines in the plane are
represented by only one plane parameter. Hence, there is only
one parameter for each planar region during optimization.
Tab. III shows the number of parameters that need to be
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updated in the global bundle adjustment on the second Monte
Carlo sequence, where 20 lines and 50 points are observed by
50 cameras. P (−w) uses points only, so it has to update 100
items at each iteration. Similar to P (−wo), we have to update
101 items and 121 items in P (−r) and PL(−r). Note that
those two need to update one plane item because they use of
co-planar constraints of point-to-plane and line-to-plane. In the
proposed solutions, only 51 items (50 cameras and 1 plane) are
updated in P (−w) and PL(−w) because they use the plane
to represent co-planar points and lines.

V. CONCLUSION

We presented an efficient and robust co-planar parametriza-
tion method for points and lines by leveraging geometric and
learning approaches together, which increases sparsity and
reduces the size of Hessian matrix in each optimization mod-
ule. Then, we illustrated how our co-planar parametrization
can be implemented in stereo-SLAM and VIO pipelines. Our
experiments show that our approach improves the efficiency
and accuracy of both stereo and VIO optimization in indoor
environments. As for future work, we plan to reconstruct
dense maps from monocular data and merge together semantic
segmentation and depth prediction to improve tracking and
mapping simultaneously.
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