TransPathNet: A Novel Two-Stage Framework for Indoor Radio Map Prediction **ICASSP 2025 Indoor Pathloss Radio Map Prediction Challenge**

Xin Li, Ran Liu, Saihua Xu, Sirajudeen Gulam Razul, Chau Yuen

Nanvang Technological University, Singapore

xin019@e.ntu.edu.sg, {ran.liu, shxu, esirajudeen, chau.yuen}@ntu.edu.sg

- 1. Problem Statement and Challenges
- 2. Proposed Method: TransPathNet
- **3.** Implementation Details
- 4. Experimental Results
- 5. Conclusion and Future Work

Indoor Pathloss Radio Map Prediction

- Given a 2D floor plan (geometry, materials), antenna info, frequency, etc.
- Predict pathloss (in dB) at each pixel.

ICASSP 2025 Challenge Setup

- Dataset: extensive ray-tracing simulations.
- Tasks:
 - 1. New geometry
 - 2. New frequency
 - 3. New antenna patterns
- Evaluation metric: RMSE (dB).

Key Difficulties

- Complex interactions (reflection, diffraction).
- Structural variations in building design.
- Wide range of frequencies & antenna characteristics.

Figure: Dataset example.

Two-Stage Coarse-to-Fine Framework

- Stage 1: Coarse prediction.
- Stage 2: Fine-grained refinement (focus on residuals, finer details).

TransPathNet Architecture

- Transformer-based encoder + multiscale convolutional attention decoder.
- Enhanced input channels for better representation.

Figure: Overview of the TransPathNet two-stage architecture.

Encoder (TransNeXt)

- Transformer + convolution layers.
- Learns hierarchical features from complex indoor layouts.

Decoder (EMCAD)

- Multiscale upsampling.
- Convolutional attention refines pathloss maps.

Skip Connections

- Retain high-resolution details.
- Ensure effective gradient flow.

TransNext -> EMCAD

TransPathNet

Figure: Network architecture.

Coarse Stage

- Generates an initial (rough) pathloss map.
- Captures global structure but may lack fine detail.

Fine Stage

- Takes coarse output + original input features.
- Learns residual corrections to refine the final pathloss prediction.

Result

• Refined prediction for complex indoor conditions and subtle variations.

Default 3-Channel Inputs

• Reflectance, transmittance, distance maps.

Enhanced Inputs

- Free Space Pathloss (FSPL) estimate.
- Transmission Ray Encoding (direct multipath emphasis).
- Antenna Embeddings (pattern, angle, position).
- Spatial-Frequency Encodings (positional + frequency embeddings).

Motivation

- Richer representation \Rightarrow more robust performance across varied conditions.
- Improves generalization to unseen geometry/frequency/antenna scenarios.

Training Configuration

- Framework: PyTorch
- Loss: MSE
- **Optimizer:** Adam, $LR = 10^{-4}$ (halved later)
- Data Augmentation: random flips, rotations

Hyperparameters

- Input resolution: 384×384
- Batch size: 4
- Epochs: 30
- **Post-Processing:** Flip + rotate test-time ensembling
- Hardware: NVIDIA RTX 4090
 - Inference time: \approx 43.8 ms per sample

Evaluation Metric: RMSE (dB)

- Tests on:
 - 1. Kaggle Subset
 - 2. Full Test Set
- Weighted tasks: geometry (30%), frequency (30%), antenna (40%).

TransPathNet Results

- RMSE = 9.73 dB on Kaggle subset
- $\mathsf{RMSE} = 10.40 \text{ dB}$ on full test set

Case	Two-Stage	Post-Proc.	RMSE(dB): Kaggle \downarrow	RMSE(dB): full \downarrow
Coarse only	×	×	9.93	10.327
+ Two-Stage Training	\checkmark	×	9.75	10.430
Full pipeline	✓	\checkmark	9.73	10.397

Table: Performance across different configurations.

Qualitative Results

Figure: (a) Ground truth, (b) Coarse prediction, (c) Fine-stage output, (d) Final post-processed.

• Observations:

- Fine stage visibly corrects errors in complex regions.
- Post-processing brings additional smoothness and consistency.

Conclusion

Key Points

- Introduced **TransPathNet**: a two-stage coarse-to-fine deep network for indoor pathloss map prediction.
- Architecture: Transformer-based encoder (TransNeXt) + EMCAD decoder with skip connections.
- Enhancements: Extra input features (FSPL, antenna embeddings, freq. encodings).
- Achieves strong results (\approx 10 dB RMSE) on the ICASSP 2025 Challenge set.

Limitations

- Inaccuracies under heavy reflection scenarios.
- Possible overfitting to certain floorplan styles.

Project Page

https://lixin.ai/TransPathNet/

Reflection-Aware Modules

• Integrate explicit multipath or advanced ray-based features.

3D Extensions

• Handle true volumetric data or multi-floor/3D building models.

Real-World Validation

• Compare with measurements from real indoor deployments.

Thank You for Your Attention!

https://lixin.ai/TransPathNet/