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Problem Statement and Challenges

Indoor Pathloss Radio Map Prediction

• Given a 2D floor plan (geometry, materials),
antenna info, frequency, etc.

• Predict pathloss (in dB) at each pixel.

ICASSP 2025 Challenge Setup
• Dataset: extensive ray-tracing simulations.
• Tasks:

1. New geometry
2. New frequency
3. New antenna patterns

• Evaluation metric: RMSE (dB).

Key Difficulties
• Complex interactions
(reflection, diffraction).

• Structural variations in
building design.

• Wide range of frequencies &
antenna characteristics.

Figure: Dataset example.
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System Overview

Two-Stage Coarse-to-Fine Framework
• Stage 1: Coarse prediction.

• Stage 2: Fine-grained refinement (focus on residuals, finer details).

TransPathNet Architecture
• Transformer-based encoder + multiscale convolutional attention decoder.

• Enhanced input channels for better representation.

Coarse output Fine output
Input features Input features with coarse output

TransPathNet TransPathNet

Coarse Stage Fine Stage

TransNext EMCAD TransNext EMCAD

Figure: Overview of the TransPathNet two-stage architecture.
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TransPathNet Architecture

Encoder (TransNeXt)

• Transformer + convolution layers.

• Learns hierarchical features from
complex indoor layouts.

Decoder (EMCAD)

• Multiscale upsampling.

• Convolutional attention refines pathloss
maps.

Skip Connections
• Retain high-resolution details.

• Ensure effective gradient flow.

Figure: Network architecture.
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Two-Stage Coarse-to-Fine

Coarse Stage

• Generates an initial (rough) pathloss map.

• Captures global structure but may lack fine detail.

Fine Stage
• Takes coarse output + original input features.

• Learns residual corrections to refine the final pathloss prediction.

Result
• Refined prediction for complex indoor conditions and subtle variations.
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Enhanced Input Features

Default 3-Channel Inputs
• Reflectance, transmittance, distance maps.

Enhanced Inputs

• Free Space Pathloss (FSPL) estimate.

• Transmission Ray Encoding (direct multipath emphasis).

• Antenna Embeddings (pattern, angle, position).

• Spatial-Frequency Encodings (positional + frequency embeddings).

Motivation
• Richer representation ⇒ more robust performance across varied conditions.

• Improves generalization to unseen geometry/frequency/antenna scenarios.
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Implementation Details

Training Configuration
• Framework: PyTorch

• Loss: MSE

• Optimizer: Adam, LR = 10−4 (halved
later)

• Data Augmentation: random flips,
rotations

Hyperparameters
• Input resolution: 384× 384

• Batch size: 4

• Epochs: 30

• Post-Processing: Flip + rotate
test-time ensembling

• Hardware: NVIDIA RTX 4090
• Inference time: ≈ 43.8 ms per

sample
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Overall Performance

Evaluation Metric: RMSE (dB)

• Tests on:

1. Kaggle Subset
2. Full Test Set

• Weighted tasks: geometry (30%), frequency (30%), antenna (40%).

TransPathNet Results
• RMSE = 9.73 dB on Kaggle subset

• RMSE = 10.40 dB on full test set

Case Two-Stage Post-Proc. RMSE(dB): Kaggle ↓ RMSE(dB): full ↓

Coarse only × × 9.93 10.327
+ Two-Stage Training ✓ × 9.75 10.430
Full pipeline ✓ ✓ 9.73 10.397

Table: Performance across different configurations.
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Qualitative Results

(a) Coarse only
RMSE 5.01

(d) Target(b) Two-stage training
RMSE 4.26

(c) Full pipeline
RMSE 4.24

Figure: (a) Ground truth, (b) Coarse prediction, (c) Fine-stage output, (d) Final post-processed.

• Observations:
• Fine stage visibly corrects errors in complex regions.
• Post-processing brings additional smoothness and consistency.
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Conclusion

Key Points
• Introduced TransPathNet: a two-stage coarse-to-fine deep network for indoor
pathloss map prediction.

• Architecture: Transformer-based encoder (TransNeXt) + EMCAD decoder with
skip connections.

• Enhancements: Extra input features (FSPL, antenna embeddings, freq. encodings).

• Achieves strong results (≈ 10 dB RMSE) on the ICASSP 2025 Challenge set.

Limitations
• Inaccuracies under heavy reflection scenarios.

• Possible overfitting to certain floorplan styles.

Project Page
• https://lixin.ai/TransPathNet/
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Future Work

Reflection-Aware Modules
• Integrate explicit multipath or advanced ray-based features.

3D Extensions
• Handle true volumetric data or multi-floor/3D building models.

Real-World Validation
• Compare with measurements from real indoor deployments.
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Thank You for Your Attention!

Questions? #

https://lixin.ai/TransPathNet/
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